

Internet of Things

Internet of Things

Architectures, Protocols and Standards

Simone Cirani
Caligoo Inc., Chicago, IL, USA

Gianluigi Ferrari
Department of Engineering and Architecture
University of Parma, Parma (PR), Italy

Marco Picone
Caligoo Inc., Chicago, IL, USA

Luca Veltri
Department of Engineering and Architecture
University of Parma, Parma (PR), Italy

This edition first published 2019
© 2019 John Wiley & Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from
this title is available at http://www.wiley.com/go/permissions.

The rights of Simone Cirani, Gianluigi Ferrari, Marco Picone and Luca Veltri to be identified as the
authors of this work has been asserted in accordance with law.

Registered Offices
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office
The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

For details of our global editorial offices, customer services, and more information about Wiley
products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some
content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
While the publisher and authors have used their best efforts in preparing this work, they make no
representations or warranties with respect to the accuracy or completeness of the contents of this
work and specifically disclaim all warranties, including without limitation any implied warranties
of merchantability or fitness for a particular purpose. No warranty may be created or extended by
sales representatives, written sales materials or promotional statements for this work. The fact that
an organization, website, or product is referred to in this work as a citation and/or potential source
of further information does not mean that the publisher and authors endorse the information or
services the organization, website, or product may provide or recommendations it may make. This
work is sold with the understanding that the publisher is not engaged in rendering professional
services. The advice and strategies contained herein may not be suitable for your situation. You
should consult with a specialist where appropriate. Further, readers should be aware that websites
listed in this work may have changed or disappeared between when this work was written and
when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

Library of Congress Cataloging-in-Publication Data

Names: Cirani, Simone, 1982- author. | Ferrari, Gianluigi, 1974- author. |
Picone, Marco, 1984- author. | Veltri, Luca, author.

Title: Internet of things : architectures, protocols and standards / Simone
Cirani, Taneto, Gattatico (RE), Italy, Ph.D., Gianluigi Ferrari, Ph.D.,
Marco Picone, Gattatico (RE), Italy Ph.D., Luca Veltri, Ph.D., Parma (PR),
Italy.

Description: First edition. | Hoboken, NJ : Wiley, 2019. |
Identifiers: LCCN 2018021870 (print) | LCCN 2018028978 (ebook) | ISBN

9781119359685 (Adobe PDF) | ISBN 9781119359708 (ePub) | ISBN 9781119359678
(hardcover)

Subjects: LCSH: Internet of things.
Classification: LCC TK5105.8857 (ebook) | LCC TK5105.8857 .C55 2019 (print) |

DDC 004.67/8–dc23
LC record available at https://lccn.loc.gov/2018021870

Cover design by Wiley
Cover image: © shulz/iStockphoto

Set in 10/12pt WarnockPro by SPi Global, Chennai, India

10 9 8 7 6 5 4 3 2 1

“Machines take me by surprise with great frequency.”
(Alan Mathison Turing)

I would like to dedicate this work: To Paola, the love of my life, my
hero, my strength. You are what I live for. To my wonderful mom and
dad. You have always supported me. You gave me everything. You
taught me the value of work and commitment. You gifted me with your
love. You are always in my heart and thoughts. To my fantastic sisters,
who have always been an example. You believed in me and blessed me
with your love, joy, and laughs. To my grandma, you will always have
a special place in my heart. You are an incredible inspiration. I miss
you. To Jonas, who has taught me the passion for knowledge,
exploration, and science. To Emil and Emma, I wish you all the best. I
am proud of you. I will never say thanks enough. I love you all. Thanks
to Marco, Gianluigi, and Luca, I am really proud and honored to have
worked and researched with you. I am so proud of what we have
achieved in these years. Finally, thanks to all my colleagues, old and
new, who contributed to make this book happen in one way or another.

Simone Cirani

To the women of my life, Anna, Sofia, and Viola: You fill my heart and
brighten my days.

Gianluigi Ferrari

To Eleonora and my parents, Antonio and Marina, who are always by
my side in every choice and decision. A special thanks to all the people
who worked with us, supported our vision, and shared the challenges
during these years.

Marco Picone

To my family.
Luca Veltri

vii

Contents

Preface xv

1 Preliminaries, Motivation, and Related Work 1
1.1 What is the Internet of Things? 1
1.2 Wireless Ad-hoc and Sensor Networks: The Ancestors

without IP 2
1.3 IoT-enabled Applications 3
1.3.1 Home and Building Automation 3
1.3.2 Smart Cities 4
1.3.3 Smart Grids 4
1.3.4 Industrial IoT 5
1.3.5 Smart Farming 7

2 Standards 9
2.1 “Traditional” Internet Review 9
2.1.1 Physical/Link Layer 10
2.1.1.1 IEEE 802.3 (Ethernet) 11
2.1.1.2 IEEE 802.11 12
2.1.2 Network Layer 14
2.1.2.1 IPv6 and IPv4 14
2.1.3 Transport Layer 17
2.1.3.1 TCP and UDP 19
2.1.4 Application Layer 21
2.1.4.1 HTTP 21
2.1.4.2 AMQP 22
2.1.4.3 SIP 23
2.2 The Internet of Things 25

viii Contents

2.2.1 Designing the Architecture of an IP-based Internet of
Things 26

2.2.2 Physical/Link Layer 28
2.2.2.1 IEEE 802.15.4 and ZigBee 28
2.2.2.2 Low-power Wi-Fi 30
2.2.2.3 Bluetooth and BLE 31
2.2.2.4 Powerline Communications 32
2.2.3 Network Layer 33
2.2.3.1 The 6LoWPAN Adaptation Layer 34
2.2.4 Transport Layer 34
2.2.5 Application Layer 34
2.2.5.1 CoAP 35
2.2.5.2 CoSIP Protocol Specification 60
2.3 The Industrial IoT 76

3 Interoperability 79
3.1 Applications in the IoT 79
3.2 The Verticals: Cloud-based Solutions 80
3.3 REST Architectures: The Web of Things 81
3.3.1 REST: The Web as a Platform 82
3.3.1.1 Resource-oriented Architectures 83
3.3.1.2 REST Architectures 84
3.3.1.3 Representation of Resources 84
3.3.1.4 Resource Identifiers 85
3.3.1.5 Statelessness 86
3.3.1.6 Applications as Finite-state Machines 86
3.3.1.7 Hypermedia as the Engine of Application State 86
3.3.2 Richardson Maturity Model 88
3.3.2.1 Level 0: the Swamp of POX 88
3.3.2.2 Level 1: Resources 90
3.3.2.3 Level 2: HTTP Verbs 90
3.3.2.4 Level 3: Hypermedia 95
3.3.2.5 The Meaning of the Levels 97
3.4 The Web of Things 97
3.5 Messaging Queues and Publish/Subscribe

Communications 98
3.5.1 Advantages of the Pub/Sub Model 99
3.5.2 Disadvantages of the Pub/Sub Model 100
3.5.3 Message Queue Telemetry Transport 100
3.5.3.1 MQTT versus AMQP 101

Contents ix

3.6 Session Initiation for the IoT 102
3.6.1 Motivations 102
3.6.2 Lightweight Sessions in the IoT 104
3.6.2.1 A Protocol for Constrained Session Initiation 106
3.6.2.2 Session Initiation 106
3.6.2.3 Session Tear-down 108
3.6.2.4 Session Modification 108
3.7 Performance Evaluation 109
3.7.1 Implementation 109
3.7.2 Experimental Results 111
3.7.3 Conclusions 114
3.8 Optimized Communications: the Dual-network

Management Protocol 115
3.8.1 DNMP Motivations 115
3.8.2 Related Work 117
3.8.3 The DNMP Protocol 118
3.8.4 Implementation with IEEE 802.15.4 and IEEE 802.11s 123
3.8.4.1 LPLT Networking 123
3.8.4.2 HPHT Networking 123
3.8.4.3 Node Integration 124
3.8.5 Performance Evaluation 125
3.8.5.1 Experimental Setup 125
3.8.5.2 Operational Limitations of IEEE 802.15.4 126
3.8.6 IEEE 802.15.4-controlled Selective Activation of the

IEEE 802.11s Network 129
3.8.7 Conclusions 130
3.9 Discoverability in Constrained Environments 131
3.9.1 CoRE Link Format 131
3.9.1.1 CoRE Link Format: Discovery 132
3.9.1.2 Link Format 133
3.9.1.3 The Interface Description Attribute 135
3.9.2 CoRE Interfaces 135
3.9.2.1 Sensor 136
3.9.2.2 Parameter 137
3.9.2.3 Read-only Parameter 137
3.9.2.4 Actuator 137
3.10 Data Formats: Media Types for Sensor Markup

Language 138
3.10.1 JSON Representations 141
3.10.1.1 Single Datapoint 141

x Contents

3.10.1.2 Multiple Datapoints 142
3.10.1.3 Multiple Measurements 142

4 Discoverability 145
4.1 Service and Resource Discovery 145
4.2 Local and Large-scale Service Discovery 146
4.2.1 ZeroConf 151
4.2.2 UPnP 152
4.2.3 URI Beacons and the Physical Web 152
4.3 Scalable and Self-configuring Architecture for Service

Discovery in the IoT 154
4.3.1 IoT Gateway 156
4.3.1.1 Proxy Functionality 156
4.3.1.2 Service and Resource Discovery 158
4.3.2 A P2P-based Large-scale Service Discovery

Architecture 159
4.3.2.1 Distributed Location Service 160
4.3.2.2 Distributed Geographic Table 161
4.3.2.3 An Architecture for Large-scale Service Discovery based on

Peer-to-peer Technologies 162
4.3.3 Zeroconf-based Local Service Discovery for Constrained

Environments 167
4.3.3.1 Architecture 167
4.3.3.2 Service Discovery Protocol 168
4.3.4 Implementation Results 170
4.3.4.1 Local Service Discovery 171
4.3.4.2 Large-scale Service Discovery 175
4.4 Lightweight Service Discovery in Low-power IoT

Networks 178
4.4.1 Efficient Forwarding Protocol for Service Discovery 180
4.4.1.1 Multicast through Local Filtered Flooding 181
4.4.2 Efficient Multiple Unicast Forwarding 183
4.5 Implementation Results 185

5 Security and Privacy in the IoT 191
5.1 Security Issues in the IoT 192
5.2 Security Mechanisms Overview 196
5.2.1 Traditional vs Lightweight security 196
5.2.1.1 Network Layer 197
5.2.1.2 Transport Layer 199

Contents xi

5.2.1.3 Application Layer 201
5.2.2 Lightweight Cryptography 202
5.2.2.1 Symmetric-key LWC Algorithms 203
5.2.2.2 Public-key (Asymmetric) LWC Algorithms 206
5.2.2.3 Lightweight Cryptographic Hash Functions 210
5.2.2.4 Homomorphic Encryption Schemes 213
5.2.3 Key Agreement, Distribution, and Security

Bootstrapping 214
5.2.3.1 Key Agreement Protocols 215
5.2.3.2 Shared Group-key Distribution 215
5.2.3.3 Security Bootstrapping 216
5.2.4 Processing Data in the Encrypted Domain: Secure Data

Aggregation 217
5.2.5 Authorization Mechanisms for Secure IoT Services 219
5.3 Privacy Issues in the IoT 222
5.3.1 The Role of Authorization 222
5.3.2 IoT-OAS: Delegation-based Authorization for the Internet

of Things 227
5.3.2.1 Architecture 227
5.3.2.2 Granting Access Tokens 229
5.3.2.3 Authorizing Requests 231
5.3.2.4 SP-to-IoT-OAS Communication: Protocol Details 231
5.3.2.5 Configuration 232
5.3.3 IoT-OAS Application Scenarios 232
5.3.3.1 Network Broker Communication 233
5.3.3.2 Gateway-based Communication 235
5.3.3.3 End-to-End CoAP Communication 235
5.3.3.4 Hybrid Gateway-based Communication 235

6 Cloud and Fog Computing for the IoT 237
6.1 Cloud Computing 237
6.2 Big Data Processing Pattern 238
6.3 Big Stream 239
6.3.1 Big-stream-oriented Architecture 243
6.3.2 Graph-based Processing 247
6.3.3 Implementation 251
6.3.3.1 Acquisition Module 251
6.3.3.2 Normalization Module 253
6.3.3.3 Graph Framework 254
6.3.3.4 Application Register Module 255

xii Contents

6.3.4 Performance Evaluation 257
6.3.5 Solutions and Security Considerations 262
6.4 Big Stream and Security 263
6.4.1 Graph-based Cloud System Security 266
6.4.2 Normalization after a Secure Stream Acquisition with OFS

Module 268
6.4.3 Enhancing the Application Register with the IGS

Module 269
6.4.4 Securing Streams inside Graph Nodes 273
6.4.5 Evaluation of a Secure Big Stream Architecture 277
6.5 Fog Computing and the IoT 281
6.6 The Role of the IoT Hub 283
6.6.1 Virtualization and Replication 285
6.6.1.1 The IoT Hub 285
6.6.1.2 Operational Scenarios 287
6.6.1.3 Synchronization Protocol 290

7 The IoT in Practice 303
7.1 Hardware for the IoT 303
7.1.1 Classes of Constrained Devices 305
7.1.2 Hardware Platforms 307
7.1.2.1 TelosB 307
7.1.2.2 Zolertia Z1 307
7.1.2.3 OpenMote 310
7.1.2.4 Arduino 313
7.1.2.5 Intel Galileo 315
7.1.2.6 Raspberry Pi 318
7.2 Software for the IoT 321
7.2.1 OpenWSN 321
7.2.2 TinyOS 322
7.2.3 FreeRTOS 323
7.2.4 TI-RTOS 323
7.2.5 RIOT 324
7.2.6 Contiki OS 325
7.2.6.1 Networking 325
7.2.6.2 Low-power Operation 326
7.2.6.3 Simulation 326
7.2.6.4 Programming Model 327
7.2.6.5 Features 328

Contents xiii

7.3 Vision and Architecture of a Testbed for the Web of
Things 328

7.3.1 An All-IP-based Infrastructure for Smart Objects 330
7.3.2 Enabling Interactions with Smart Objects through the IoT

Hub 332
7.3.2.1 Integration Challenges 334
7.3.3 Testbed Access and Security 335
7.3.3.1 The Role of Authorization 335
7.3.4 Exploiting the Testbed: WoT Applications for Mobile and

Wearable Devices 336
7.3.5 Open Challenges and Future Vision 338
7.4 Wearable Computing for the IoT: Interaction Patterns with

Smart Objects in RESTful Environments 340
7.4.1 Shaping the Internet of Things in a Mobile-Centric

World 340
7.4.2 Interaction Patterns with Smart Objects through Wearable

Devices 342
7.4.2.1 Smart Object Communication Principles 342
7.4.2.2 Interaction Patterns 343
7.4.3 Implementation in a Real-world IoT Testbed 345
7.4.3.1 Future Vision: towards the Tactile Internet 348
7.5 Effective Authorization for the Web of Things 349
7.5.1 Authorization Framework Architecture 353
7.5.1.1 System Operations 353
7.5.2 Implementation and Validation 357

Reference 359

Index 381

xv

Preface

The Internet of Things or, as commonly referred to and now univer-
sally used, IoT has two keywords: things and Internet. The very idea of
IoT consists allowing things to connect to the (existing) Internet, thus
allowing the generation of information and, on the reverse, the inter-
action of the virtual world with the physical world. This book does not
attempt to be an exhaustive treaty on the subject of IoT. Rather, it tries
to present a broad view of the IoT based on the joint research activ-
ity at the University of Parma, mainly in the years between 2012 and
2015 (when all the authors were affiliated with the same Department
of Information Engineering), especially in the context of the EU FP7
project CALIPSO (Connect All IP-based Smart Objects!, 2012–2014).
In particular, we present, in a coherent way, new ideas we had the
opportunity to explore in the IoT ecosystem, trying to encompass the
presence of heterogeneous communication technologies through uni-
fying concepts such as interoperability, discoverability, security, and
privacy. On the way, we also touch upon cloud and fog computing
(two concepts interwoven with IoT) and conclude with a practical view
on IoT (with focus on the physical devices). The intended audience of
the book is academic and industrial professionals, with good techni-
cal skills in networking technologies. To ease reading, we have tried to
provide intuition behind all presented concepts.

The contents of the book flow from a preliminary overview on the
Internet and the IoT, with details on “classical” protocols, to more
technical details. The synopsis of the book can be summarized as fol-
lows: The first chapter introduces IoT in general terms and illustrates
a few IoT-enabled applications, from home/building automation to
smart farming. The second chapter contains an overview of relevant
standards (e.g. Constrained Application Protocol, CoAP), presented

xvi Preface

according to the protocol layers and parallelizing the “traditional”
Internet and the IoT, with a final outlook on industrial IoT. Chapter
three focuses on interoperability, a key concept for IoT, highlighting
relevant aspects (e.g. Representational State Transfer (REST) archi-
tectures and Web of Things) and presenting illustrative applications
(e.g. the Dual-network Management Protocol (DNMP) allowing the
interaction of IEEE 802.11s and IEEE 802.15.4 networks). At the
end of Chapter three, we preliminarily also discuss discoverability in
constrained environments (with reference to the CoRE Link Format);
this paves the way to Chapter four, which dives into the concept of
discoverability (both in terms of service and resource discovery),
presenting a few of our research results in this area. Chapter five
is dedicated to security and privacy in the IoT, discussing proper
mechanisms for IoT in a comparative way with respect to common
mechanisms for classical Internet. In Chapter six, we consider cloud
and fog computing, discussing concepts such as big stream processing
(relevant for cloud-based applications) and the IoT Hub (relevant
for fog-based applications). Finally, Chapter seven is an overview of
hands-on issues, presenting relevant hardware devices and discussing
a Web-of-Things-oriented vision for a test bed implementation.

We remark that the specific IoT protocols, algorithms, and archi-
tectures considered in this book are “representative,” as opposed to
“universal.” In other words, we set to write this book mainly to pro-
vide the reader with our vision on IoT. Our hope is that this book will
be interpreted as a starting point and a useful comparative reference
for those interested in the continuously evolving subject of the IoT.

It is our pleasure to thank all the collaborators and students who
were with us during the years of research that have led to this book,
collaborating with the Wireless Adhoc and Sensor Networks (WASN)
Lab of Department of Information Engineering of the University
of Parma, which has lately been “rebranded,” owing to this intense
research activity, as the IoT Lab at the Department of Engineering and
Architecture. We particularly thank, for fundamental contributions,
Dr. Laura Belli, Dr. Luca Davoli, Dr. Paolo Medagliani, Dr. Stefano
Busanelli, Gabriele Ferrari, Vincent Gay, Dr. Jérémie Leguay, Mattia
Antonini, Dr. Andrea Gorrieri, Lorenzo Melegari, and Mirko Mancin.
We also thank, for collaborative efforts and useful discussions, Dr.
Michele Amoretti, Dr. Francesco Zanichelli, Dr. Andrzej Duda,
Dr. Simon Duquennoy, Dr. Nicola Iotti, Dr. Andrea G. Forte, and
Giovanni Guerri. Finally, we express our sincere gratitude to Wiley

Preface xvii

for giving us the opportunity to complete this project. In particular,
we are indebted to Tiina Wigley, our executive commissioning editor,
for showing initial interest in our proposal; we are really indebted to
Sandra Grayson, our associate book editor, who has shown remark-
able patience and kindness, tolerating our delay and idiosyncrasies
throughout the years of writing.

Parma, July 2018 Simone Cirani
Gianluigi Ferrari
Marco Picone
Luca Veltri

1

1

Preliminaries, Motivation, and Related Work

1.1 What is the Internet of Things?

The Internet of Things (IoT) encapsulates a vision of a world in
which billions of objects with embedded intelligence, communication
means, and sensing and actuation capabilities will connect over IP
(Internet Protocol) networks. Our current Internet has undergone
a fundamental transition, from hardware-driven (computers, fibers,
and Ethernet cables) to market-driven (Facebook, Amazon) opportu-
nities. This has come about due to the interconnection of seamingly
disjoint intranets with strong horizontal software capabilities. The IoT
calls for open environments and an integrated architecture of inter-
operable platforms. Smart objects and cyber-physical systems – or
just “things” – are the new IoT entities: the objects of everyday life,
augmented with micro-controllers, optical and/or radio transceivers,
sensors, actuators, and protocol stacks suitable for communication
in constrained environments where target hardware has limited
resources, allowing them to gather data from the environment and
act upon it, and giving them an interface to the physical world. These
objects can be worn by users or deployed in the environment. They are
usually highly constrained, with limited memory and available energy
stores, and they are subject to stringent low-cost requirements. Data
storage, processing, and analytics are fundamental requirements,
necessary to enrich the raw IoT data and transform them into
useful information. According to the “Edge Computing” paradigm,
introducing computing resources at the edge of access networks may
bring several benefits that are key for IoT scenarios: low latency,
real-time capabilities and context-awareness. Edge nodes (servers
or micro data-centers on the edge) may act as an interface to data

Internet of Things: Architectures, Protocols and Standards, First Edition.
Simone Cirani, Gianluigi Ferrari, Marco Picone, and Luca Veltri.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

2 1 Preliminaries, Motivation, and Related Work

streams coming from connected devices, objects, and applications.
The stored Big Data can then be processed with new mechanisms,
such as machine and deep learning, transforming raw data generated
by connected objects into useful information. The useful information
will then be disseminated to relevant devices and interested users or
stored for further processing and access.

1.2 Wireless Ad-hoc and Sensor Networks:
The Ancestors without IP

Wireless sensor networks (WSNs) were an emerging application field
of microelectronics and communications in the first decade of the
twenty-first century. In particular, WSNs promised wide support of
interactions between people and their surroundings. The potential of
a WSN can be seen in the three words behind the acronym:

• “Wireless” puts the focus on the freedom that the elimination of
wires gives, in terms of mobility support and ease of system deploy-
ment;

• “Sensor” reflects the capability of sensing technology to provide the
means to perceive and interact — in a wide sense — with the world;

• “Networks” gives emphasis to the possibility of building systems
whose functional capabilities are given by a plurality of communi-
cating devices, possibly distributed over large areas.

Pushed on by early military research, WSNs were different from
traditional networks in terms of the communication paradigm: the
address-centric approach used in end-to-end transmissions between
specific devices, with explicit indication of both source and destina-
tion addresses in each packet, was to be replaced with an alternative
(and somewhat new) data-centric approach. This “address blindness”
led to the selection of a suitable data diffusion strategy – in other
words, communication protocol – for data-centric networks. The
typical network deployment would consist of the sources placed
around the areas to be monitored and the sinks located in easily
accessible places. The sinks provided adequate storage capacity to
hold the data from the sources. Sources might send information to
sinks in accordance with different scheduling policies: periodic (i.e.,
time-driven), event specific (i.e., event-driven), a reply in response to

1.3 IoT-enabled Applications 3

requests coming from sinks (i.e., query-driven), or some combination
thereof.

Because research focused on the area, WSNs have typically been
associated with ad-hoc networks, to the point that the two terms
have almost become – although erroneously so – synonymous. In
particular, ad-hoc networks are defined as general, infrastructure-less,
cooperation-based, opportunistic networks, typically customized for
specific scenarios and applications. These kinds of networks have to
face frequent and random variations of many factors (radio channel,
topology, data traffic, and so on), implying a need for dynamic
management of a large number of parameters in the most efficient,
effective, and reactive way. To this end, a number of key research
problems have been studied, and solutions proposed, in the literature:

• self-configuration and self-organization in infrastructure-less
systems;

• support for cooperative operations in systems with heterogenous
members;

• multi-hop peer-to-peer communication among network nodes,
with effective routing protocols;

• network self-healing behavior providing a sufficient degree of
robustness and reliability;

• seamless mobility management and support of dynamic network
topologies.

1.3 IoT-enabled Applications

The IoT touches every facet of our lives. IoT-enabled applications are
found in a large number of scenarios, including: home and building
automation, smart cities, smart grids, Industry 4.0, and smart agricul-
ture. In each of these areas, the use of a common (IP-oriented) commu-
nication protocol stack allows the building of innovative applications.
In this section, we provide a concise overview of potential applications
in each of these areas.

1.3.1 Home and Building Automation

As the smart home market has seen growing investment and has
continued to mature, ever more home automation applications have

4 1 Preliminaries, Motivation, and Related Work

appeared, each designed for a specific audience. The result has been
the creation of several disconnected vertical market segments. Typical
examples of increasingly mainstream applications are related to home
security and energy efficiency and energy saving. Pushed by the inno-
vations in light and room control, the IoT will foster the development
of endless applications for home automation. For example, a typical
example of an area of home automation that is destined to grow in
the context of the IoT is in healthcare, namely IoT-enabled solutions
for the physically less mobile (among others, the elderly, particulary
relevant against a background of aging populations), and for the
disabled or chronically ill (for instance, remote health monitoring and
air-quality monitoring). In general, building automation solutions are
starting to converge and are also moving, from the current applica-
tions in luxury, security and comfort, to a wider range of applications
and connected solutions; this will create market opportunities. While
today’s smart home solutions are fragmented, the IoT is expected to
lead to a new level of interoperability between commercial home and
building automation solutions.

1.3.2 Smart Cities

Cities are complex ecosystems, where quality of life is an important
concern. In such urban environments, people, companies and public
authorities experience specific needs and demands in domains such
as healthcare, media, energy and the environment, safety, and public
services. A city is perceived more and more as being like a single “or-
ganism”, which needs to be efficiently monitored to provide citizens
with accurate information. IoT technologies are fundamental to col-
lecting data on the city status and disseminating them to citizens. In
this context, cities and urban areas represent a critical mass when it
comes to shaping the demand for advanced IoT-based services.

1.3.3 Smart Grids

A smart grid is an electrical grid that includes a variety of operational
systems, including smart meters, smart appliances, renewable energy
resources, and energy-efficient resources. Power line communications
(PLC) relate to the use of existing electrical cables to transport data and
have been investigated for a long time. Power utilities have been using
this technology for many years to send or receive (limited amounts of)

1.3 IoT-enabled Applications 5

data on the existing power grid. Although PLC is mostly limited by the
type of propagation medium, it can use existing wiring in the distribu-
tion network. According to EU’s standards and laws, electrical utility
companies can use PLC for low bit-rate data transfers (with data rates
lower than 50 Kbps) in the 3–148 kHz frequency band. This technol-
ogy opens up new opportunities and new forms of interactions among
people and things in many application areas, such as smart meter-
ing services and energy consumption reporting. This makes PLC an
enabler for sensing, control, and automation in large systems spread
over relatively wide areas, such as in the smart city and smart grid
scenarios. On top of PLC, one can also adopt enabling technologies
that can improve smart automation processes, such as the IoT. For
instance, the adoption of the PLC technology in industrial scenarios
(e.g., remote control in automation and manufacturing companies),
paves the way to the “Industrial IoT”. Several applications have been
enabled by PLC technology’s ability to recover from network changes
(in terms of repairs and improvements, physical removal, and transfer
function) mitigating the fallout on the signal transmission.

Nevertheless, it is well known that power lines are far from ideal
channels for data transmission (due to inner variations in location,
time, frequency band and type of equipment connected to the line).
As a result there has been increasing interest in the joint adoption of
IoT and PLC paradigms to improve the robustness of communication.
This has led to the suggestion of using small, resource-constrained
devices (namely, IoT), with pervasive computing capabilities, and
internet standard solutions (as proposed by Internet standardization
organizations, such as IETF, ETSI and W3C). Such systems can be
key components for implementing future smart grids.

1.3.4 Industrial IoT

The Industrial Internet of Things (IIoT) describes the IoT as used in
industries such as manufacturing, logistics, oil and gas, transporta-
tion, energy/utilities, mining and metals, aviation and others. These
industries represent the majority of gross domestic product among
the G20 nations. The IIoT is still at an early stage, similar to where the
Internet was in the late 1990s. While the evolution of the consumer
Internet over the last two decades provides some important lessons, it
is unclear how much of this learning is applicable to the IIoT, given its
unique scope and requirements. For example, real-time responses are

6 1 Preliminaries, Motivation, and Related Work

often critical in manufacturing, energy, transportation and healthcare:
real time for today’s Internet usually means a few seconds, whereas real
time for industrial machines involves sub-millisecond scales. Another
important consideration is reliability. The current Internet embodies
a “best effort” approach, which provides acceptable performance for
e-commerce or human interactions. However, the failure of the power
grid, the air traffic control system, or an automated factory for the same
length of time would have much more serious consequences.

Much attention has been given to the efforts of large companies such
as Cisco, GE, and Huawei, and government initiatives such as Industrie
4.0 in Germany. For example:

• GE announced that it realized more than $1 billion in incremental
revenues in 2014 by helping customers improve asset performance
and business operations through IIoT capabilities and services.

• The German government is sponsoring “Industrie 4.0”, a multi-year
strategic initiative that brings together leaders from the public and
private sectors as well as from academia to create a comprehen-
sive vision and action plan for applying digital technologies to the
German industrial sector.

• Other European countries have their own industrial transformation
projects in which the IIoT takes center stage, such as Smart Fac-
tory (the Netherlands), Industry 4.0 (Italy), Industry of the Future
(France), and others.

• China has also recently launched its “Made in China 2025” strat-
egy to promote domestic integration of digital technologies and
industrialization.

As the IIoT gains momentum, one of the biggest bottlenecks faced is
the inability to share information between smart devices that may be
speaking different “languages”. This communication gap stems from
the multiple protocols used on factory floors. So, while you can put a
sensor on a machine to gather data, the ability to push that information
across a network and ultimately “talk” with other systems is a bit more
difficult. Standardization is therefore a key aspect of the IIoT.

The IIoT’s potential payoff is enormous. Operational efficiency is one
of its key attractions, and early adopters are focused on these benefits.
By introducing automation and more flexible production techniques,
for instance, manufacturers could boost their productivity by as much
as 30%. In this context, three IIoT capabilities must be mastered:

1.3 IoT-enabled Applications 7

• sensor-driven computing: converting sensed data into insights
(using the industrial analytics described below) that operators and
systems can act on;

• industrial analytics: turning data from sensors and other sources
into actionable insights;

• intelligent machine applications: integrating sensing devices and
intelligent components into machines.

1.3.5 Smart Farming

Modern agriculture is facing tremendous challenges as it attempts
to build a sustainable future across different regions of the globe.
Examples of such challenges include population increase, urban-
ization, an increasingly degraded environment, an increasing trend
towards consumption of animal proteins, changes in food preferences
as a result of aging populations and migration, and of course climate
change. A modern agriculture needs to be developed, characterized by
the adoption of production processes, technologies and tools derived
from scientific advances, and results from research and development
activities.

Precision farming or smart agriculture is an area with the greatest
opportunities for digital development but with the lowest penetra-
tion, to date, of digitized solutions. The farming industry will become
arguably more important than ever before in the next few decades. It
could derive huge benefits from the use of environmental and terres-
trial sensors, applications for monitoring the weather, automation for
more precise application of fertilizers and pesticides (thus reducing
waste of natural resources), and the adoption of planning strategies
for maintenance.

Smart farming is already becoming common, thanks to the appli-
cation of new technologies, such as drones and sensor networks
(to collect data) and cloud platforms (to manage the collected data).
The set of technologies used in smart farming are as complex as
the activities run by farmers, growers, and other stakeholders in the
sector. There are is a wide spectrum of possible applications: fleet
management, livestock monitoring, fish farming, forest care, indoor
city farming, and many more. All of the technologies involved revolve
around the concept of the IoT and aim at supporting farmers in their
decision processes through decision-support systems. They involve
real-time data at a level of granularity not previously possible. This

8 1 Preliminaries, Motivation, and Related Work

enables better decisions to be made, translating into less waste and an
increase in efficiency.

Communication technologies are a key component of smart agricul-
ture applications. In particular, wireless communication technologies
are attractive, because of the significant reduction and simplification
in wiring involved. Various wireless standards have been established.
One can group these into two main categories, depending on the
transmission range:

• Short-range communication: including standards for:
– wireless LAN, used for Wi-Fi, namely IEEE 802.11
– wireless PAN, used more widely for measurement and automation

applications, such as IEEE 802.15.1 (Bluetooth) (IEEE, 2002) and
IEEE 802.15.4 (ZigBee/6LoWPAN) (IEEE, 2003).

All these standards use the instrumentation, scientific and medi-
cal (ISM) radio bands, typically operating in the 2.400–2.4835 GHz
band.

• Long-range communication: including the increasingly important
sub-gigahertz IoT communication techologies, such as LoRA, in
the 868–870 MHz band. These trade data transmission rates (on the
order of hundreds of kbit/s) for longer transmission ranges.

Communication technologies can be also classified according to the
specific application:

• environmental monitoring (weather monitoring and geo-referenced
environmental monitoring)

• precision agriculture
• machine and process control (M2M communications)
• facility automation
• traceability systems.

9

2

Standards

2.1 “Traditional” Internet Review

The original idea of the Internet was that of connecting multiple
independent networks of rather arbitrary design. It began with
the ARPANET as the pioneering packet switching network, but
soon included packet satellite networks, ground-based packet radio
networks and other networks. The current Internet is based on the
concept of open-architecture networking (an excellent overview of the
history of the Internet is in an article by Leiner et al. [1]). According to
this original approach, the choice of any individual network technol-
ogy was not dictated by a particular network architecture but rather
could be selected freely by a provider and made to interwork with the
other networks through a meta-level “internetworking architecture”.
The use of the open systems interconnect (OSI) approach, with the use
of a layer architecture, was instrumental in the design of interactions
between different networks. The TCP/IP protocol suite has proven to
be a phenomenally flexible and scalable networking strategy. Internet
Protocol (IP) (layer three) provides only for addressing and forwarding
of individual packets, while the transport control protocol (TCP;
layer four), is concerned with service features such as flow control
and recovery when there are lost packets. For those applications that
do not need the services of TCP, the User Datagram Protocol (UDP)
provides direct access to the basic service of IP.

In practice, the seven-layer architecture foreseen by the ISO-OSI
protocol stack has been replaced by a five-layer IP stack. This is
typically referred to as the TCP/IP protocol stack, because the
TCP is the most-used protocol in the transport layer and IP is the
almost ubiquitous in the network layer. The three upper layers of the

Internet of Things: Architectures, Protocols and Standards, First Edition.
Simone Cirani, Gianluigi Ferrari, Marco Picone, and Luca Veltri.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

10 2 Standards

OSI Model TCP/IP Model

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application Layer

Transport Layer

Internet Layer

Host-To-Network

(Network Access Layer)

Figure 2.1 Communication protocol stacks: traditional seven-layer ISO-OSI stack
(left) versus four-layer TCP/IP stack (right).

ISO-OSI protocol stack – the session (layer five), presentation (layer
six), and application (layer seven) – converge in a single (fifth) layer
in the TCP/IP protocol stack, namely The layered architecture of the
Internet (according to the ISO-OSI and TCP/IP models) is shown in
Figure 2.1.

In the following, we summarize the main communication protocols
used in the various layers of the ISO-OSI communication protocol
stack. In particular, we will outline:

• at the physical/link layer (L1/L2), the IEEE802.3 (Ethernet) and IEEE
802.11 (Wi-Fi) protocols;

• at the network layer (L3), IPv4 and IPv6;
• at the transport layer (L4), TCP and UDP;
• at the application layer (L5), Hypertext Transfer Protocol (HTTP)

and Session Initiation Protocol (SIP).

2.1.1 Physical/Link Layer

In this subsection, we focus on two relevant communication protocols
for physical/link (PHY/MAC) layers, namely the IEEE 802.3 standard

2.1 “Traditional” Internet Review 11

(typically referred to as Ethernet) and the IEEE 802.11 (which refers
to the vast family of Wi-Fi standards, with all their amendments).
While the former applies to wired local area networks (LANs), the
latter applies to wireless LANs (WLANs). Being related to the bottom
two layers of the protocol stack, they mostly refer to point-to-point
communications; in other words, there is no concept of routing.

2.1.1.1 IEEE 802.3 (Ethernet)
IEEE 802.3 is the set of standards issued by the Institute of Electrical
and Electronics Engineers (IEEE) to define Ethernet-based networks
as well as the name of the working group assigned to develop them.
IEEE 802.3 is otherwise known as the Ethernet standard and defines
the physical layer and the media access control (MAC) for the data link
layer for wired Ethernet networks. It is generally a local area network
(LAN) technology.

IEEE 802.3 specifies the physical and networking characteristics
of an Ethernet network, such as how physical connections between
nodes (routers/switches/hubs) are made through various wired
media, such as copper coaxial or fiber cables. The technology was
developed to work with the IEEE 802.1 standard for network archi-
tecture and the first released standard was Ethernet II in 1982, which
featured 10 Mbit/s delivered over thick coaxial cable and frames with
a type field. In 1983, the first standard with the name IEEE 802.3 was
developed for 10BASE5 (also known as “thick Ethernet” or thicknet).
It had the same speed as the earlier Ethernet II standard, but the type
field was replaced by a length field. IEEE 802.3a followed in 1985,
and was designated as 10BASE2, which was essentially the same as
10BASE5 but ran on thinner coaxial cables, therefore it was also
known as “thinnet” or “cheapnet”.

There are a multitude of additions and revisions to the 802.3 stan-
dard and each is designated by letters appended after the number “3”.
Other notable standards are 802.3i for 10Base-T for twister pair wire
and 802.3j 10BASE-F for fiber-optic cables, with the latest revision
(2016) being 802.3bz, which supports 2.5GBASE-T and 5GBASE-T:
2.5-Gbit and 5-Gbit Ethernet over Cat-5/Cat-6 twisted pair wires.

At layer two, Ethernet relies on carrier-sense multiple access with
collision detection technology (CSMA/CD). A CSMA protocol works
as follows. A station desiring to transmit senses the medium. If
the medium is busy (i.e., some other station is transmitting) then
the station defers its transmission to a later time. If the medium is

12 2 Standards

sensed as being free then the station is allowed to transmit. CSMA is
very effective when the medium is not heavily loaded since it allows
stations to transmit with minimum delay. But there is always a chance
of stations simultaneously sensing the medium as being free and
transmitting at the same time, causing a collision. These collision
situations must be identified so that the MAC layer can retransmit the
frame by itself and not rely on the upper layers, which would cause
significant delay. Ethernet relies on the CD mechanism to mitigate this
condition. It uses a carrier-sensing scheme in which a transmitting
station can detect collisions while transmitting a frame. It does this by
sensing transmissions from other stations. When a collision condition
is detected, the station stops transmitting that frame, transmits a jam
signal, and then waits for a random time interval before trying to
resend the frame. This collision detection approach is possible over
cabled networks, but does not work in wireless networks. CSMA/CD
improves the CSMA performance by terminating transmission as
soon as a collision is detected, thus shortening the time required
before a retry can be attempted.

2.1.1.2 IEEE 802.11
IEEE 802.11 is a set of PHY/MAC specifications for implementing
wireless local area networks (WLAN) in various frequency bands,
including the 900 MHz and the 2.4, 3.6, 5, and 60 GHz bands. The base
version of the standard was released in 1997, and has had numerous
subsequent amendments. The standard and its amendments provide
the basis for wireless network products using the Wi-Fi brand. While
each amendment is officially revoked when it is incorporated in
the latest version of the standard, the corporate world tends to market
the revisions individually, because they concisely denote the capabili-
ties of their products. As a result, in the marketplace, each revision
tends to become its own standard. Among the latest amendments are:
• IEEE 802.11ac (2013): which guarantees very high throughput in the

frequency band below 6 GHz, and brings potential improvements
over 802.11n, including a better modulation scheme, wider chan-
nels, and multi-user MIMO;

• IEEE 802.11ah (2016): for sub-GHz license-exempt operations, such
as sensor networks and smart metering;

• IEEE 802.11ai: which introduces fast initial link setup.
An 802.11 LAN is based on a “cellular” architecture: the system is

subdivided into cells. Each cell, referred to as a basic service set in the

2.1 “Traditional” Internet Review 13

802.11 nomenclature, is controlled by a base station, known as an
access point (AP). Although a wireless LAN may be formed by a
single cell, with a single AP, most installations are formed by several
cells, with the APs connected through some backbone, denoted as
the distribution system (DS). This backbone is typically an Ethernet,
and in some cases is wireless itself. The whole interconnected WLAN,
including the different cells, their respective APs and the DS, is seen
as a single 802 network to the upper layers of the OSI model and is
known as an extended service set.

The basic access mechanism, called the distributed coordination
function, is basically a carrier sense multiple access with collision
avoidance technology (CSMA/CA). As notes above, CD mechanisms
are a good idea in a wired LAN, but they cannot be used in a WLAN
environment for two main reasons:

• it would require the implementation of a full-duplex radio, increas-
ing the price significantly;

• in a wireless environment we cannot assume that all stations hear
each other (which is the basic assumption of the CD scheme), and
the fact that a station wants to transmit and senses the medium as
free does not necessarily mean that the medium is free around the
receiver area.

In order to overcome these problems, the 802.11 standard uses a
CA mechanism together with a positive acknowledgement scheme, as
follows:

1) A station wanting to transmit senses the medium: if the medium
is busy then it defers; if the medium is free for a specified time
(referred to as the distributed interframe space), then the station
is allowed to transmit.

2) The receiving station checks the cyclic redundancy check (CRC) of
the received packet and sends an acknowledgment packet (ACK).
Receipt of the ACK indicates to the transmitter that no collision
occurred. If the sender does not receive the ACK then it retransmits
the fragment until it receives the ACK or, if after a given number of
retransmissions, no ACK is received, the packet is discarded.

Virtual carrier sensing is another mechanism used to reduce the
probability of collisions between two stations that are not within
transmission range of each other. A station wanting to transmit a
packet first transmits a short control packet, referred to as a request to

14 2 Standards

send (RTS). This includes the source, destination, and the duration of
the following transaction; in other words, the packet and the respec-
tive ACK packet. The destination station then responds (if the medium
is free) with a response control packet, referred to as the clear to send
(CTS), which includes the same duration information. All stations
receiving either the RTS and/or the CTS, set their virtual carrier sense
indicators (referred to as the network allocation vector, NAV), for the
given duration, and use this information together with the physical
carrier sense when sensing the medium. This mechanism reduces
the probability of a collision in the receiver area by a station that
is “hidden” from the transmitter to the short duration of the RTS
transmission. This is because the station hears the CTS and reserves
the medium as busy until the end of the transaction. The duration
information on the RTS also protects the transmitter area from
collisions during the ACK (from stations that are out of range of the
acknowledging station). It should also be noted that, because the RTS
and CTS are short frames, the mechanism also reduces the overhead
of collisions, since these are recognized faster than if the whole packet
were to be transmitted – this is true if the packet is significantly
bigger than the RTS, so the standard allows for short packets to be
transmitted without the RTS/CTS transaction.

2.1.2 Network Layer

In this subsection, we focus on the key protocol at the network layer
(layer 3), namely IP, the key protocol for relaying datagrams across the
Internet, defined as a combination of heterogeneous networks. IP is
thus the key protocol to enable inter-networking and to allow effi-
cient and robust routing in a very scalable way. The current version
of IP is version 4 (IPv4), which relies on 32-bit addresses. However, its
designated successor and thr fundamental enabler of the IoT is IPv6,
which used 128-bit addresses, thus allowing the number of address-
able “things” to explode. In the following, a comparative oveview of
IPv4 and IPv6 is presented.

2.1.2.1 IPv6 and IPv4
IPv6 is the next-generation Internet protocol, and the Internet is still
in its transition from IPv4. IPv4 public addresses have been exhausted
and various techniques – such as Dynamic Host Control Protocol
(DHCP), network address translation (NAT), and sub-netting – have
been proposed in order to slow down the rate at which IPv4 IP address
exhaustion is approaching.

2.1 “Traditional” Internet Review 15

In practice, IPv6 is much more than an extension of IPv4 addressing.
IPv6, first defined in the RFC 2460 standard, is a complete implemen-
tation of the network layer of the TCP/IP protocol stack and it covers
a lot more than a simple address-space extension from 32 to 128 bits
(the mechanism that gives IPv6 its ability to allocate addresses to all
the devices in the world for decades to come).

The technical functioning of the Internet remains the same with
both versions of IP, and it is likely that both versions will continue
to operate simultaneously on networks well into the future. To date,
most networks that use IPv6 support both IPv4 and IPv6 addresses.

The main characteristics of IPv4 and IPv6 can be summarized as
follows. For more details, the reader is invited to the many widely avail-
able references on the subject.

IPv4
IPv4 uses 32-bit (4-byte) addresses in dotted decimal notation, for
example 192.149.252.76, with each entry being a decimal digit –
leading zeros can be omitted. An address is composed of a network
and a host portion, which depend on the address class. Various
address classes are defined: A, B, C, D, or E depending on initial few
bits. The total number of IPv4 addresses is 232 = 4,294,967,296. NAT
can be used to extend these address limitations.

The IPv4 header has a variable length of 20–60 bytes, depending on
the selected IP options. The support of IPSec is optional and options
are integrated in the header fields (before any transport header).
The left-hand side of Figure 2.2 shows the structure of an IPv4
header.

IPv4 addresses are not associated with the concept of address
lifetimes, unless the IP address has been assigned by a DHCP (for
example, through a Wi-Fi access point).

IPv4 addresses are categorized into three basic types: unicast
address, multicast address, and broadcast address. All IPv4 addresses
are public, except for three address ranges that have been des-
ignated as private by IETF RFC 1918: 10.*.*.* (10/8), 172.16.0.0
through 172.31.255.255 (172.16/12) , and 192.168.*.* (192.168/16).
Private address domains are commonly used within organizations.
Private addresses cannot be routed across the Internet. IP addresses
are assigned to hosts by DHCP or static configuration.

The typical minimum value of the maximum transmission unit
(MTU) of a link – the maximum number of bytes that a particular link
type supports – is 576 bytes.

1 Byte

Version Version
Header

Length

DATA

H

e

a

d

e

r

32 bits

1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte 1 Byte

Type of Service Total Packet Length

ldentification Flags Fragment Offset

 ProtocolTime to Live Header Checksum

32-bit IPv4 Source Address 128-bit IPv6 Source Address

32-bit IPv4 Destination Address

128-bit IPv6 Destination Address

(Options, if present, padded if needed)

Payload Length Next Header Hop Limit

Flow LabelTraffic Class

Figure 2.2 Header structure for IPv4 (left) and IPv6 (right) packets.

2.1 “Traditional” Internet Review 17

IPv6
IPv6 uses 128-bit (16-byte) addresses in hexadecimal notation (i.e.,
each entry corresponds to 4 bits), for example 3FFE:F200:0234:
AB00. The basic architecture is 64 bits for the network number and 64
bits for the host number. Often, the host portion of an IPv6 address
(or part of it) will be derived from a MAC address or other interface
identifier. The total number of IPv6 addresses is 2128 = 3.4× 1038.
There is no NAT support by design.

The IPv6 header has a fixed length of 40 bytes and there are no
IP header options. IPSec needs to be supported and options are
supported with extension headers (there is a simpler header format).
The extension headers are AH and ESP (unchanged from IPv4),
hop-by-hop, routing, fragment, and destination. The right-hand part
of Figure 2.2 shows the structure of an IPv6 header.

IPv6 addresses have two lifetimes: preferred and valid. The preferred
lifetime is always shorter than the valid one. After the preferred life-
time expires, the address must not be used as a source IP address to
establish new connections if another preferred address exists. When
the valid lifetime expires, the address is not used as a valid source or
destination IP address. The rationale for a potentially finite lifetime of
an IPv6 address is to match the disposable nature of things, such as a
beacon with a two-year lifetime.

IPv6 addresses are categorized into three basic types: unicast,
multicast, and anycast. IPv6 addresses can also be classified as either
public or temporary (with limited lifetime). Temporary addresses can
be routed globally, while IPv4 private addresses cannot. Temporary
addresses are used for privacy purposes, concealing the actual
identity of the initiator of a communication. Moreover, temporary
addresses do not contain an interface identifier that is a MAC address.
IPv6 addresses are self-assigned to hosts with stateless address
auto-configuration or DHCPv6.

IPv6 has a lower boundary limit on MTU of 1280 bytes and there-
fore does not fragment packets below this threshold. Fragmentation
and defragmentation at the link-layer must occur to transmit an IPv6
packet over a link of less than 1280 MTU, such as IEEE 802.15.4.

2.1.3 Transport Layer

The main goal of protocols at the transport layer is to provide host-to-
host communication services for applications, hiding the underlying

8 15 16

TCP Segment Header Format

UDP Datagram Header Format

23 24 3170

0 Source Port Destination Port

Sequence Number

Acknowledgement Number

32

64

96 Data Offset Res

Header and Data Checksum

Flags Window Size

Options

Urgent Pointer128

160...

Bit #

8 15 16 23 24 3170

0 Source Port

Length Header and Data Checksum

Destination Port

32

Bit #

Figure 2.3 Header structure for TCP (top) and UDP (bottom) datagrams.

2.1 “Traditional” Internet Review 19

networking strategy (dealt with at network layer) and specific link-
by-link communication strategies (dealt with at link and physical
layers).

2.1.3.1 TCP and UDP
The two widely used protocols at the transport layer are TCP and UDP:
while TCP is used for connection-oriented transmissions, UDP is used
for simpler messaging transmissions. In general terms, TCP creates
virtual circuits between hosts and guarantees features such as reliabil-
ity, flow control, congestion avoidance, and multiplexing, while UDP is
a best-effort protocol that allows packet transmissions with minimum
reliability (e.g., checking data integrity at the receiver. While TCP is the
predominant transport layer protocol in the classical Internet, UDP,
owing to its simplicity of implementation, is a very attractive option
for IoT scenarios. TCP is suited for applications that require high reli-
ability, and transmission time is relatively less critical. UDP is suitable
for applications that need fast, yet “best-effort”, transmission, such as
games. UDP’s stateless nature is also useful for servers that answer
small queries from huge numbers of clients. This makes UDP a very
attractive option for IoT scenarios.

TCP rearranges data packets in the order specified, whereas UDP
has no inherent order: all packets are independent of each other. If
ordering is required, it has to be managed by the application layer.
TCP data is read as a byte stream, and no distinguishing indications are
transmitted to signal message (segment) boundaries. In UDP, packets
are sent individually and are checked for integrity only if they arrive.

TCP is “heavyweight”, requiring three packets to set up a socket con-
nection before any user data can be sent. It handles reliability and
congestion control (in other words, TCP does flow control). UDP is
“lightweight” – there is no ordering of messages, no tracking connec-
tions, and so on. In other words, UDP does not have an option for flow
control.

In Figure 2.3, the header structure of TCP (top) and UDP (bottom)
are shown: as expected, the TCP header is much larger than that for
UDP. More precisely, each TCP header has ten required fields totaling
20 bytes (160 bits) and it can also optionally include an additional data
section of up to 40 bytes in size; a UDP header contains 8 bytes.

The layout of TCP headers is as follows.
• Source TCP port (2 bytes) and destination TCP port (2 bytes) num-

bers are the communication endpoints for sending and receiving
devices.

20 2 Standards

• Message senders use sequence numbers (4 bytes) to mark the
ordering of a group of messages. Both senders and receivers use
the acknowledgment number (4 bytes) field to communicate the
sequence numbers of messages that are either recently received or
expected to be sent.

• The data offset field (4 bits) stores the total size of a TCP header in
multiples of 4 bytes. A header not using the optional TCP field has
a data offset of five (representing 20 bytes), while a header using the
maximum-sized optional field has a data offset of 15 (representing
60 bytes).

• Reserved data (3 bits) in TCP headers always has a value of zero. This
field aligns the total header size as a multiple of four bytes (which is
important for efficiency of data processing).

• TCP uses a set of six standard and three extended control flags
(each an individual bit representing on or off, for a total of 9 bits) to
manage data flow in specific situations. One bit flag, for example,
initiates the TCP connection reset logic.

• TCP senders use a number called window size (2 bytes) to regulate
how much data they send to a receiver before requiring an acknowl-
edgment in return. If the window size becomes too small, network
data transfer will be unnecessarily slow, while if the window size
becomes too large, the network link can become saturated (unusable
for any other applications) or the receiver may not be able to process
incoming data quickly enough (also resulting in slow performance).
Windowing algorithms built into the protocol dynamically calcu-
late size values and use this field of the TCP header to coordinate
changes between senders and receivers.

• The checksum value (2 bytes) inside a TCP header is generated by
the protocol sender, and helps the receiver detect messages that are
corrupted or tampered with.

• The urgent pointer field (2 bytes) is often set to zero and ignored, but
in conjunction with one of the control flags, it can be used as a data
offset to mark a subset of a message as requiring priority processing.

• Usage of optional TCP data (0–40 bytes) is beyond the scope of
this chapter, but includes support for special acknowledgment and
window-scaling algorithms.
The layout of UDP headers is as follows.

• Source UDP port (2 bytes) and destination UDP port (2 bytes) num-
bers are the communication endpoints for sending and receiving
devices.

2.1 “Traditional” Internet Review 21

• The length field (2 bytes) in a UDP header represents the total size
of each datagram, including both header and data. This field ranges
in value from a minimum of 8 bytes (the required header size) to
sizes above 65,000 bytes.

• Similar to TCP, a UDP checksum (2 bytes) allows receivers to
cross-check incoming data for any corrupted bits.

2.1.4 Application Layer

Perhaps the most important reason for the widespread adoption of the
Internet is the design and development of application layer protocols,
which have been made available to developers as effective means to
transmit information among endpoints of distributed applications
without having to specify a custom communication protocol. This
section will describe protocols that had an impact on the development
of Internet-based applications and represent a valid introduction to
IoT application scenarios.

2.1.4.1 HTTP
Hypertext Transfer Protocol (HTTP) [2, 3] is the most popular appli-
cation layer protocol, and has been the true enabler of the Worldwide
Web. Because of its extreme popularity, it is outside the scope of this
book to present a detailed description of the protocol. We will out-
line the most prominent features in order to highlight why HTTP is
perhaps the most important and widespread application layer on the
Internet.

HTTP is a stateless text-based request/response protocol that
defines the communication between a client and a server over a TCP
connection. The HTTP protocol is characterized by the following
features:

• URLs are used to give addresses to resources targeted by requests.
• Methods (or verbs) are defined in order to provide semantics at the

application layer about the type of operation being executed by the
server. The main methods used are typically GET, POST, PUT, and
DELETE, although many other verbs have been defined, either in
the HTTP specification itself or in subsequent updates to address
specific issues.

• Header fields can be added to messages in order to convey further
information, so that they are processed in the correct way and to
provide additional semantics to communication.

22 2 Standards

• Status codes in responses provide a standard, uniform, and descrip-
tive way to inform the client about the result of the request that has
been served. Status codes are divided into classes:
– 1xx Informational
– 2xx Success
– 3xx Redirection
– 4xx Client error
– 5xx Server error

The solidity of the HTTP specification and its implementation
in all programming languages and platforms make it common as
an application-layer transport protocol for information transmitted
between endpoints. Its use makes the design of distributed appli-
cations extremely efficient, because all efforts can be dedicated to
defining the semantics of the data being exchanged.

In 2015, HTTP/2 [4] was released, with a particular focus on effi-
cient communication and reduced consumption of network resources
in terms of latency, header compression, and parallel flows over the
same connection.

2.1.4.2 AMQP
The Advanced Message Queue Protocol (AMQP1) is a message-
oriented protocol and a standard of the Organization for the
Advancement of Structured Information Standards. The current
version of AMQP is 1.0. AMQP can be seen as the asynchronous
complement of HTTP.

AMQP is not an actual publish/subscribe (pubsub) protocol, but
rather a specification for interoperable messaging for message-
oriented middleware (MOM). AMQP defines a wire format; that is,
the set of rules and principles that must be observed to create the
stream of bytes to be transmitted. Therefore, any AMQP client can
work with any MOM that implements AMQP.

AMQP is based on a queue server. Queues are message storage facil-
ities. AMQP publishers can send messages directly to a queue or to an
exchange, which is a topic-based router for message dispatching. Mes-
sages can be tagged with a routing key (a topic). Queues can be bound
to an exchange for selective message dispatching to consumers. The
routing key supports a dot-separated syntax that allows for different

1 https://www.amqp.org.

2.1 “Traditional” Internet Review 23

levels of expressiveness. Through the use of wildcards, a fine-grained
routing of messages can be implemented.

Persistent queues store messages until a consumer pulls them off
the queue; they are not tied to the existence of a consumer. Queues
can, however, be dynamically created by a consumer and will then be
destroyed when the consumer disconnects.

AMQP provides great flexibility in creating different messaging sce-
narios, such as message queue, fanout, routing, and even remote pro-
cedure calls (RPC). It supports reliable delivery of messages.

The most popular implementations of AMQP are RabbitMQ2 and
Apache ActiveMQ3 .

2.1.4.3 SIP
The Session Initiation Protocol (SIP) [5] is an IETF standard
application-layer control protocol that can be used to establish, mod-
ify, or terminate end-to-end sessions. SIP is a text-based client-server
protocol, where the client sends SIP requests and the server responds
to requests. The SIP architecture includes both end systems (termi-
nals), also called SIP user agents, and intermediate systems, called
SIP proxy, redirect or registrar servers, depending on their function.
A “registrar server” is SIP server that receives registration requests
issued by SIP user agents, and is used for maintaining the binding
between the SIP user name (also called address-of-record; SIP AOR)
and its current contact address, which can be used for reaching such
user/resources. The mapping between SIP AORs and SIP contact
URIs is called a location service and is an important component for
resource discovery in SIP.

All SIP addresses are represented by URIs with the scheme sip:, and
identify a name or contact address of a SIP user; a SIP user can be a
real user, a system, an application, or some other kind of resource.

The proxy servers are intermediary entities that act as both server
and client for making requests on behalf of other clients. A proxy
server may act as an “outbound” proxy when used for routing SIP
requests addressed to users that are not maintained in a local location
service, or as a “far-end” (or “destination”) proxy if the request is
addressed to a user with an AOR maintained by the proxy and mapped
to one or more SIP contact URIs.

2 https://www.rabbitmq.com/.
3 http://activemq.apache.org.

24 2 Standards

In contrast to proxy servers, redirect servers accept requests and
replies to the client with a response message that typically provides
a different contact address (URI) for the target of previous request.

SIP signaling between users consists of requests and responses.
When a user agent (UA) wants to send a request to a remote user
(identified by a SIP AOR), it may send the message directly to the
IP address of the remote user’s UA, or to the proxy server that is
responsible for the target AOR (normally the fully qualified domain
name of the proxy server is included in the AOR), or to a locally
configured outbound proxy server. When the request reaches the
target UA, the latter may optionally reply with some provisional 1xx
responses and with one final response (codes 2xx for success, or 3xx,
4xx, 5xx and 6xx for failure).

SIP defines different request methods, such as INVITE, ACK,
BYE, CANCEL, OPTIONS, REGISTER, SUBSCRIBE, and NOTIFY.
When a UA wants to initiate a session it sends an INVITE message
that may be responded to with provisional 1xx responses and a
final response. The UA that issued the INVITE then has to confirm
the final response with an ACK message. In contrast to all other
SIP transactions, the INVITE transaction is a three-way handshake
(INVITE/2xx/ACK).

Once the session is established, both endpoints (user agents) may
modify the session with a new INVITE transaction, or tear-down
the session with a BYE transaction (BYE/2xx). When the caller or
the callee wish to terminate a call, they send a BYE request. SIP
messages may contain a “body”, which is treated as opaque payload
by SIP.

Figure 2.4 shows an example of SIP message flow, including the
registration of two UAs with their own registrar/proxy servers, and
a session setup and tear-down from UA1 (identified by the SIP AOR
sip:u1@P1) to UA2 (identified by the SIP AOR sip:u2@P2).

During an INVITE transaction, the SIP body is used to negotiate the
session in terms of transport and application protocol, IP addresses
and port number, payload formats, encryption algorithms and param-
eters, and so on. The negotiation follows an offer/answer paradigm:
the offer is usually sent within the INVITE while the answer is in the
2xx final response. The most commonly used protocol for such nego-
tiations is the Session Description Protocol (SDP), but other protocols
may be used.

2.2 The Internet of Things 25

UA1
REGISTER sip:P1

To: sip:u1@P1

Contact: sip:address1:port1

REGISTER sip:P2

To: sip:u2@P2

Contact: sip:address2:port2

Proxy1

200 OK

180 Ringing
180 Ringing

ACK sip:address2:port2

Data sessions

200 OK

BYE sip:address2:port2

180 Ringing

200 OK

200 OK

Contact: sip:address2:port2

[SDP offer]

200 OK

Contact: sip:address2:port2

[SDP offer]

200 OK

Contact: sip:address2:port2

[SDP offer]

INVITE sip:u2@P2

Contact: sip:address1:port1

[SDP offer]

INVITE sip:u2@P2

Contact: sip:address1:port1

[SDP offer]

INVITE sip: address2:port2

Contact: sip:address1:port1

[SDP offer]

Proxy2 UA2

Figure 2.4 UA registration and session setup with two intermediate proxy servers.

2.2 The Internet of Things

The IoT and its applications are becoming a reality, with several com-
mercial players developing innovative products in a variety of fields,
such as home automation and smart cities. These products are starting
to reach end users, who are now becoming aware of the integration of
physical and cyber worlds. The forecast of billions (or trillions) of con-
nected devices in future years is constantly being confirmed and can be
objectively considered as a fact. The “gold rush” of the IoT era, driven
on one hand by the will to demonstrate the feasibility of interconnect-
ing everyday devices to people and, on the other hand, by the intention
to make custom solutions into standards for public use, has created a
plethora of closed vertical solutions. This is leading to a highly frag-
mented market, a babel of incompatible solutions, rather than a highly
interoperable environment, which is what the Internet and the IoT
should be like.

26 2 Standards

Current IoT applications consider personal devices to be gateways,
which have to bridge the world of smart objects and the user. Typi-
cally, users must run custom software on their smartphones in order to
interact with particular IoT objects. These apps have prior knowledge
of the things they will work with: there are established communication
protocols, data formats, and application-specific interaction patterns.
In the long run, this approach represents a huge barrier to progress for
a number of reasons.
• Smart objects manufactured by the same vendor typically need to be

accessed through legacy software, resulting in a plethora of applica-
tions that end-users must install and use. This also has an impact on
the creation of new applications for smart objects, whose interfaces
(APIs) must be disclosed by the vendor to application developers.

• Mobility is a critical factor: people access services and use
applications while on the go. This means they might enter envi-
ronments that contain smart objects that they have not come
across before (for example, because they enter a room in a hotel
or museum they had never visited before, because some smart
objects might have been deployed since their last visit, or because
smart objects have changed their capabilities). While there are
standard self-configuring mechanisms for discovering services
and resources,(such as mDNS, DNS-SD, and web linking), these
approaches are not adequate if users want to to fully and seamlessly
interact with things.

• Smart objects should be able to adapt dynamically to particular con-
ditions, such as a change in their battery level or hosted resources,
or the presence of specific users. Smart objects should be able to
drive different forms of interaction, which may not have been con-
sidered at the time of custom software implementation and would
therefore require upgrades or new software to be installed.

2.2.1 Designing the Architecture of an IP-based Internet
of Things

The IoT calls for adaptive interactions between humans and smart
objects, with the goal of filling the gap between users, the physical
world, and the cyber world. In order to avoid dependence on specific
legacy software, this interaction should be driven by the smart objects
that are pervasively deployed and accessed. All actors need to speak
the same language: IP.

2.2 The Internet of Things 27

In order to prevent the fragmentation that results from vertical
solutions, significant effort has been expended in private and public
research groups and in standards organizations such as IEEE, IETF,
and IPSO. This activity had two main goals:

• to define open standards for communication (e.g., 6LoWPAN/-
CoAP);

• to map the traditional IP-based Internet stack to the IoT.

We can now assume that the IoT will be a network of heteroge-
neous interconnected devices. This will be the infrastructure for the
so-called “Web of Things” (WoT). After being actively involved in
this research and standardization phase, we feel that there is still a
significant amount of work to be done to reach a state where the IoT
can be accessed and exploited by end-users with the same simplicity
that they experience on the web. At this point, it is time to really
start interacting with smart objects, not just to communicate with
them. The WoT is being designed around well-known concepts and
practices derived from the Web, such as the REST paradigm. The
REST paradigm was introduced to loosely couple client applications
with the systems they interact with, to support long-term evolution
of systems, and to provide robustness. While this proves to perfectly
fit in machine-to-machine (M2M) scenarios, the loose coupling
introduced at the application layer is not sufficient to enable the
widespread adoption of applications that require humans to be in
the loop, for example by providing input/output through some user
interface. CoAP has been designated as the standard protocol for the
WoT, similar to the position of HTTP for the web. In fact, CoAP has
been designed to work with HTTP, to which it directly maps so as to
give easy integration. While CoAP mainly targets M2M application
scenarios, the widespread adoption of the WoT requires tools that
allow humans to be in the loop. The Firefox web browser add-on
Copper6 has been developed with the aim of narrowing the gap
between the world of browsers and the world of things. Although
this add-on provides a handy technical, debug console-like tool for
working with CoAP-enabled smart objects, it does not really allow for
easy interaction for any user. In our opinion, intuitive and easy-to-use
interfaces for end-users are currently missing.

The evolution of mobile and wearable computing has changed
the way people use online services; they are now always connected,
whether at home or on the go. In this context, there is a concrete need

28 2 Standards

to fill the gap between mobile devices and the IoT. A paradigm shift in
areas such as human–computer interactions is needed to let people
access and use the IoT with the same ease with which they can access
the Internet and possibly also to enable new and more natural forms
of interaction, which will widen the range of IoT users.

The evolution towards the IoT begins by rethinking and optimizing
all of the relevant layers of the protocol stack. In the following, we out-
line the main characteristics of the communication protocols being
considered for the IoT.

2.2.2 Physical/Link Layer

In this subsection, we focus on four communication protocol groups
relevant for IoT scenarios, (mostly) at the physical/link layer:

• the IEEE 802.15.4 standard and Zigbee, which relies on IEEE
802.15.4 and introduces application management on top of this
(i.e., Zigbee is not strictly at the physical/link layer)

• low-power Wi-Fi, an amendment of the Wi-Fi protocol family that
is attractive for IoT applications

• Bluetooth and its newest energy-efficient version Bluetooth Low
Energy (BLE), which are extremely attractive for IoT because of
their widespread availability, notably in almost every smartphone

• protocols in the area of power line communications (PLC).

While the first three groups are relevant for wireless communi-
cations, the last one is used in wired communications (in electrical
cables).

2.2.2.1 IEEE 802.15.4 and ZigBee
The IEEE 802.15 working group defined the physical layer (PHY)
and the medium access sub-layer (MAC) for low-complexity,
low-power-consumption, low-bit-rate WPAN connectivity. The IEEE
802.15.4 standard, approved in 2003 and amended several times
in the following years, contributes to all of these aims, and several
compliant products are already available on the market, even if more
as development kits than as real end-products.

The physical layer of IEEE 802.15.4 foresees the use of one of three
possible unlicensed frequency bands:

• 868.0–868.6 MHz: used in Europe, and allows one communication
channel (versions published in 2003, 2006, 2011);

2.2 The Internet of Things 29

• 902–928 MHz: used in North America, up to ten channels (2003),
extended to thirty (2006);

• 2400–2483.5 MHz: used worldwide, with up to sixteen channels
(2003, 2006).
The original 2003 version of the standard specifies two physical

layers based on direct sequence spread spectrum (DSSS) techniques:
one working in the 868/915 MHz bands with transfer rates of 20 and
40 kbit/s, and one in the 2450 MHz band with a rate of 250 kbit/s.

The 2006 revision (IEEE 802.15.4b) improves the maximum data
rates of the 868/915 MHz bands, so they support 100 and 250 kbit/s.
It goes on to define four physical layers depending on the modulation
method used. Three of these preserve the DSSS approach:
• In the 868/915 MHz bands, binary or offset quadrature phase shift

keying can be used (the latter being optional).
• In the 2450 MHz band, using the latter.
• An alternative, optional 868/915 MHz layer is defined using a com-

bination of binary keying and amplitude shift keying; it is thus based
on parallel sequence spread spectrum (PSSS).
Dynamic switching between supported 868/915 MHz PHYs is

possible.
Beyond these three bands, the IEEE 802.15.4c study group con-

sidered the newly opened 314–316 MHz, 430–434 MHz, and
779–787 MHz bands in China, while the IEEE 802.15 Task Group
4d defined an amendment to 802.15.4-2006 to support the new
950–956 MHz band in Japan. The first standard amendments by these
groups were released in April 2009.

In August 2007, IEEE 802.15.4a was released. This expanded the
four PHYs available in the earlier 2006 version to six, including one
PHY using direct sequence ultra-wideband and another using chirp
spread spectrum. The ultra-wideband PHY is allocated frequencies in
three ranges: below 1 GHz, between 3 and 5 GHz, and between 6 and
10 GHz. The chirp spread spectrum PHY is allocated spectrum in the
2450 MHz ISM band.

In April 2009, IEEE 802.15.4c and IEEE 802.15.4d were released.
These expanded the available PHYs through addition of several new
PHYs: one for the 780 MHz band using O-QPSK or MPSK and
another for the 950 MHz band using GFSK or BPSK.

IEEE 802.15.4e, finally approved in 2012, was defines a MAC
amendment to the existing 802.15.4-2006 standard. It adopts a

30 2 Standards

channel-hopping strategy to improve support for the industrial
markets, and increases robustness against external interference and
persistent multi-path fading.

The IEEE 802.15.4 family provides for low bit-rate connectivity in the
personal operating space; typically between 10 and 100 m. Full support
of mesh networks for battery-powered nodes is provided, through the
classification of devices into two different types: full function devices
(FFD) and reduced function devices (RFD). An IEEE 802.15.4 network
should include at least one FFD operating as the PAN coordinator
for special (but not centralized) functions, whereas all the other FFDs
should make up the wireless sensor network (WSN) backbone; RFDs,
which are usually intended as the “leaf” nodes of the WSN spanning
tree, perform simple tasks more related to sensing than networking.
An RFD can communicate only with one FFD, while an FFD can com-
municate with both RFDs and FFDs.

In the late 2000s, on the basis of the current IEEE 802.15.4 specifi-
cations, a consortium of hundreds of companies agreed the adoption
of an industrial standard called ZigBee; the name was inspired by the
social behavior of bees, which work together to tackle complex tasks.
ZigBee exploits cooperation to allow for the multi-hop exchange of
messages and it adds logical network, security, and application man-
agement functions on top of the referenced IEEE 802.15.4 standard
by defining the upper layers of the protocol stack, from network to
application. In addition, ZigBee defines application profiles, a set of
template-based descriptions of device configurations, each one spe-
cialized for work in a common cooperative and distributed application.
Aside from its technical aspects, one of the main tasks of the ZigBee
Alliance is to ensure interoperability among devices made by different
manufacturers, thus expanding their potential adoption.

2.2.2.2 Low-power Wi-Fi
Low-power Wi-Fi refers to IEEE 802.11ah, an amendment of the IEEE
802.11-2007 wireless networking standard, called Wi-Fi HaLow by the
Wi-Fi Alliance. Wi-Fi HaLow is expected to enable a variety of new
power-efficient use cases in smart homes, connected cars, and digi-
tal healthcare, as well as industrial, retail, agriculture, and smart city
environments. Wi-Fi HaLow extends Wi-Fi into the 900 MHz band,
enabling the low-power connectivity necessary for the creation of large
groups of stations or sensors that cooperate to share signals, support-
ing the concept of the IoT. Wi-Fi HaLow’s range is nearly twice that

2.2 The Internet of Things 31

of today’s Wi-Fi, and will not only be capable of transmitting signals
further, but will also provide more robust connections in challenging
environments and where the ability to penetrate walls or other barriers
is an important consideration.

802.11ah could solve many of the problems with deploying large-
footprint Wi-Fi networks by allowing for a significant number of
devices, providing power-saving services and allowing for long
distances to the AP. A typical 802.11ah AP could associate more than
8,000 devices in a hierarchical ID structure within a range of 1 km,
making it ideal for areas with a high concentrations of sensors and
other small devices, such as street lamp controllers and smart parking
meters. The 802.11ah standard also includes new PHY and MAC
layers, grouping devices into traffic indication maps to accommodate
small units (such as sensors) and M2M communications.

2.2.2.3 Bluetooth and BLE
Bluetooth is a standard wire-replacement communications protocol
primarily designed for low-power consumption and short com-
munication ranges. The transmission range is power dependent.
The specifications were formalized by the Bluetooth Special Interest
Group (SIG). The SIG was formally established by Ericsson, IBM, Intel,
Toshiba and Nokia in 1998: today it has a membership of over 30,000
companies worldwide. While Bluetooth 3.0, introduced in 2009, sup-
ported a data rate of 25 Mbit/s with a transmission range of 10 m, with
the latest Bluetooth 5.0, introduced in 2016, the data rate and trans-
mission range have increased to 50 Mbit/s and 240 m. On top of the
physical layer, link-layer services including medium access, connec-
tion establishment, error control, and flow control are provided. The
upper logical link control and adaptation protocol provides multiplex-
ing for data channels, fragmentation and reassembly of larger packets.
The other upper layers are the Generic Attribute Protocol, which pro-
vides for efficient data collection from sensors, and the generic access
profile, which allows for configuration and operation in different
modes, such as advertising or scanning, and connection initiation and
management.

The Bluetooth Core Specification version 4.0 (known also as “Blue-
tooth Smart”) was adopted in 2010. Bluetooth 4.0 includes classic
Bluetooth, Bluetooth High Speed and Bluetooth Low Energy (BLE)
protocols. Bluetooth High Speed is based on Wi-Fi, while classic
Bluetooth consists of legacy Bluetooth protocols. BLE, previously

32 2 Standards

known as Wibree, is a subset of Bluetooth 4.0 with an entirely new
protocol stack for rapid build-up of simple links. It is aimed at
very low power applications running off a coin cell battery. Chip
designs allow for two types of implementation: dual-mode and single-
mode.

Starting from version 4.2, IoT-oriented features have been intro-
duced into Bluetooth:

• low energy secure connection with data packet length extension
(v4.2);

• link layer privacy (v4.2);
• IP support profile (v6.0)
• readiness for Bluetooth Smart Things to support connected homes

(v4.2);
• connectionless services, such as location-relevant navigation of

low-energy Bluetooth connections (v5.0).

BLE uses a short-range radio with minimal power use, which can
operate for a much longer time (even for years) compared to previ-
ous versions. Its range coverage (about 100 m) is ten times that of the
classic Bluetooth while its latency is 15 times shorter. BLE can be oper-
ated using a transmission power of between 0.01 and 10 mW. With
these characteristics, BLE is a good candidate for IoT applications. The
BLE standard has been developed rapidly by smartphone makers and
is now available in most smartphone models. The feasibility of using
this standard has been demonstrated in vehicle-to-vehicle communi-
cations as well as in WSNs.

Compared to ZigBee, BLE is more efficient in terms of energy con-
sumption and the ratio of transmission energy per transmitted bit. BLE
allows devices to operate as masters or slaves in a star topology. For the
discovery mechanism, slaves send advertisements over one or more
dedicated advertisement channels. To be discovered as a slave, these
channels are scanned by the master. When they are not exchanging
data, the devices are in sleep mode.

2.2.2.4 Powerline Communications
Power line communications (PLC) involve the use of existing elec-
trical cables to transport data and have been investigated for a long
time. Power utilities have been using this technology for many years
to send or receive (limited amounts of) data on the existing power

2.2 The Internet of Things 33

grid. Today, PLCs represent a very appealing area of application for IoT
technologies.

Relevant IoT-oriented smart grid communication protocols can be
summarized as follows.

• PRIME: intended for PLC-based modems operating in the fre-
quency range between 42 kHz and 88 kHz using orthogonal
frequency-division multiplexing;

• HomePlug: operating at frequencies of up to 400 kHz;
• G3-PLC: intended for PLC-based modems operating in a sub-

frequency range of the CENELEC A band, from 35 to 91 kHz;
• G.hnem: the specification was drafted by ITU and selected G3-PLC

and PRIME as annexes to its main body.
• IEEE P1901.2: defined by IEEE and adopting G3- PLC and PRIME.

2.2.3 Network Layer

The envisioned IP-based IoT will consist of trillions of connected
devices. This unprecedented magnitude demands strategic choices to
be taken in the design of a global network of smart objects. On the
one hand, there is the need to address each and every smart object
individually (and globally). On the other hand, the use of IPv4 cannot
be a long-term approach. The depletion of IPv4 addresses makes
it impossible to assign public IPv4 addresses to objects. The use of
IPv4 would require the introduction of NAT techniques in order
to provide an extended address space to smart objects. This would
involve complex configuration management to ensure reachability of
smart objects. As a result, the scalability, manageability, and ease of
deployment of smart objects would be in jeopardy.

Stemming from these considerations, the only feasible solution to
create a global, sustainable, and scalable IoT is to adopt IPv6 at the net-
work layer. In particular, IPv6 provides some beneficial features that
make its adoption convenient:

• its addresses are 128 bits long, thus making it possible to assign
about 3.4× 1038 unique IP addresses;

• it integrates IPSec for security;
• it provides link-local and global addresses, derived from the device’s

MAC address, with a prefix of fe80::/10, or provided by the net-
work’s router.

34 2 Standards

2.2.3.1 The 6LoWPAN Adaptation Layer
Low-power wireless personal area networks (WPANs) have special
characteristics, that set them apart from earlier link-layer technolo-
gies. These include limited packet size (a maximum 127 bytes for
IEEE 802.15.4), various address lengths, and low bandwidth. These
characteristics necessitate an adaptation layer that fits IPv6 packets to
the IEEE 802.15.4 specifications. The IETF 6LoWPAN working group
developed such a standard in 2007. 6LoWPAN is the specification
of mapping services required to maintain an IPv6 network over
low-power WPANs. The standard provides header compression to
reduce the transmission overhead, fragmentation to meet the IPv6
MTU requirement, and forwarding to link-layer to support multi-hop
delivery. In general, the goal of 6LoWPAN is to transmit a small IPv6
datagram over a single IEEE 802.15.4 hop.

2.2.4 Transport Layer

IoT scenarios typically call for energy-efficient, lightweight, and non
CPU-intensive approaches to communication. This is a result of the
limited capabilities of smart objects. For these reasons, UDP is the typ-
ical choice for transport-layer communication in the IoT. Of course,
this choice results in the impossibility of enjoying the nice features
that TCP provides, such as retransmission, ordering, and congestion
control. These must be implemented in a higher layer if needed by an
application.

There are other transport-layer protocols that may be considered,
such as SCTP [6], which focuses on stream control. However, there
has not been a concrete effort by the research community, academia,
or industry to define an IoT-oriented transport-layer protocol as has
been done for all other layers.

2.2.5 Application Layer

The experience gained with the Internet and the importance attributed
to application-layer protocols have been critical to the awareness that
the IoT needs a dedicated application-layer, which must take into
account all the requirements of, and the conditions deriving from,
lower layers. A dedicated web transfer protocol for low-power and
lossy networks (LLNs), called the Constrained Application Protocol
(CoAP), has been defined, with the aim of replicating the outstanding
experience of HTTP and the resulting widespread adoption of the
web. Other application-layer protocols have also been proposed in

2.2 The Internet of Things 35

order to provide alternatives to the stateless request/response com-
munication paradigm offered by CoAP. Examples include pub/sub
communications (an example of which is the MQTT protocol), and
introducing sessions such as CoSIP.

In this section, we will provide a detailed presentation of CoAP and
CoSIP in order to highlight their features, the design choices behind
them, and how they can represent the enablers for the development
and deployment of efficient, complex, large-scale IoT applications.

2.2.5.1 CoAP
LoWPANs are typically characterized by:

• Small packet size: Since the maximum physical layer packet for
IEEE 802.15.4 is 127 bytes, the resulting maximum frame size at
the MAC layer is 102 octets. Link-layer security imposes a further
overhead, which, in the maximum case (21 octets of overhead in
the AES-CCM-128 case, versus 9 and 13 for AES-CCM-32 and
AES-CCM-64, respectively), leaves only 81 octets for data packets.

• Low bandwidth: The limited bandwidth does not allow for data to
be transferred at high rates (data rates are of the order of tens or a
few hundreds of kilobits per second). It is important to exchange as
little data as possible to minimize latency of transmission.

• Low power: Some devices are battery operated, so energy consump-
tion is a critical issue. Since radio-related operations are the most
energy-consuming, it is desirable to minimize the amount of data
to be transferred to keep radio utilization as low as possible.

• Low cost: Devices are typically associated with sensors, switches,
and so on. This drives some of their other characteristics such as
low processing power, low memory, and so on. Numerical values
for “low” are not given on purpose: costs tend to change over time

• Unreliability: Devices are subject to uncertain radio connectivity,
battery drain, device lockups, and physical tampering.

• Duty cycling. Devices connected to a LoWPAN may sleep for long
periods of time in order to save energy, and are thus unable to com-
municate during these sleep periods.

Adopting IPv6 in constrained environments through 6LoWPAN
introduces:

• packet fragmentation (into small link-layer frames) and compres-
sion at the transmitter;

• fragment reassembly (from small link-layer frames) and decompres-
sion at the receiver.

36 2 Standards

In 6LoWPANs, fragmentation can increase the probability of packet
delivery failure. Given the small packet size of LoWPANs, applications
must send small amounts of data:

• less data⇒ fewer fragments to be sent⇒ lower energy consumption
(CPU/TX/RX);

• less data ⇒ fewer fragments to be sent ⇒ lower packet loss proba-
bility.

Due to the limited capabilities of objects in the IoT, the distinction
among the different layers of the protocol stack is not as strong as in
the traditional Internet. This means that design choices taken at a par-
ticular layer may (and typically do) have an impact on all the other
layers. A cross-layer design is therefore required to ensure that things
work as expected and to prevent a bad design from affecting the func-
tioning of the object. For instance, HTTP and TCP are not well suited
in this area due to overhead they introduce. On the one hand, HTTP
is a text-based and very verbose protocol. On the other hand, TCP is a
connection-oriented transport and requires setting up and maintain-
ing of connections, which is burdensome both from a processing and a
communication perspective. Moreover, duty-cycling is not compatible
with keeping connections alive.

For all the above reasons, application-layer protocols for the IoT
must be designed carefully in order to take into account the constraints
deriving from lower layers and the very nature of smart objects.

The IETF candidate as application-layer protocol for the IoT is the
Constrained Application Protocol (CoAP), defined in RFC 7252 [7].
CoAP was designed by the IETF Constrained RESTful Environments
(CoRE) working group and became an Internet standard in mid-2014.
CoAP is a lightweight application-layer protocol purposedly designed
to bring web functionalities to constrained devices that operate
in LLNs.

In order to meet the requirements of constrained environments,
CoAP differs from HTTP in a number of ways. First, it uses UDP as
the underlying transport protocol instead of TCP, thus removing the
burden of establishing and maintaining connections, which may be
infeasible for smart objects that have limited capabilities and may be
duty-cycled. As a consequence, CoAP implements its own reliability
mechanisms for message retransmission, which cannot be guaranteed
by the transport-layer protocol. In addition, in order to minimize

2.2 The Internet of Things 37

overhead, and unlike HTTP, CoAP uses a binary format instead of a
text-based format.

CoAP has been designed to bring the REST paradigm (see
Section 3.3) to the IoT. CoAP implements a request/response (client/
server) communication model on top of UDP – or its secure version,
Datagram Transport Layer Security (DTLS) — supporting four basic
methods: POST, GET, PUT, and DELETE.

Protocol overview
CoAP is an application-layer protocol designed to be used by con-
strained devices in terms of computational capabilities, which may
feature limited battery and operate in constrained (low-power and
lossy) networks.

CoAP is a RESTful protocol According to the REST paradigm, CoAP
URIs identify the resources of the application. A resource represen-
tation is the current or intended state of a resource referred to the
server through a proper namespace. Representations of resources are
exchanged between a client and a server. A client that is interested in
the state of a resource sends a request to the server; the server then
responds with the current representation of the resource.

CoAP maps to HTTP CoAP maps to HTTP easily in order to guaran-
tee full integration with the web. The CoAP protocol stack mirrors
HTTP’s, as shown in Figure 2.5. The mapping allows protocol transla-
tion to be performed easily on dedicated proxies in order to guarantee
full interoperability between HTTP clients and CoAP servers and vice
versa. This mechanism enables CoAP-unaware clients, such as legacy

Figure 2.5 CoAP
protocol stack vs.
HTTP protocol stack.

CoAP

UDP

IPv6/6LoWPAN

MAC

PHY

MAC

PHY

IP

TCP

HTTPApplication

Transport

Network

Link

Physical

Layers Internet of Things Internet

38 2 Standards

HTTP-based applications, to work with smart objects without requir-
ing any changes.

CoAP is a binary protocol CoAP minimizes overhead by adopting
a binary message format. CoAP messages are formed from some
mandatory fields (Version, Type, Token, Code, Message-ID) and other
optional fields (CoAP Options and Payload). The syntax of CoAP
messages has been designed not only to keep messages small, but also
to make them extremely easy and light to parse, so that smart objects
can receive a benefit in terms of energy consumption.

CoAP runs on top of UDP CoAP runs on top of UDP, which is the most
lightweight transport in terms of overhead (only 8 bytes are added by
the header). Moreover, the connectionless nature of UDP does not
introduce communication, processing, or memory overheads due to
the establishment and maintenance of TCP connections.

CoAP embeds IoT-oriented features Due to the nature of the opera-
tional scenarios in which it is going to be used, CoAP introduces some
IoT-oriented features, such as:

• resource observation
• asynchronous message exchange
• multicast communication.

CoAP URI
CoAP URIs use either the coap: or coaps: scheme (Figure 2.6), the lat-
ter referring to secure CoAP (CoAPs). CoAPs uses DTLS as a secure
transport, similar to HTTP’s use of TLS. The default UDP ports
are 5683 for coap: and 5684 for coaps:.

coap:// example.com :5683 /sensor ?id=1

scheme

CoAP URI

host port path query

coaps:// example.com :5684 /sensor ?id=1

Figure 2.6 CoAP
URI.

2.2 The Internet of Things 39

CoAP messaging
CoAP is based on a request/response communication model. Since
CoAP is based on UDP, reliability is not provided by the transport
layer. Retransmission may be therefore needed, especially in LoW-
PAN, where the physical conditions and radio protocols used may
have detrimental effects on communications. CoAP implements
reliability internally, and handles these situations by implementing a
retransmission and deduplication mechanism.

The connectionless nature of UDP results in an asynchronous com-
munications model. This means that, unlike connection-based com-
munications, request and responses must be matched. CoAP includes
fields used for request/response matching.

CoAP is characterized by two layers, as shown in Figure 2.7:

• The messaging layer provides support for duplicate detection and
(optionally) reliability.

• The requests/responses layer provides support for RESTful interac-
tions, through GET, POST, PUT, DELETE methods.

CoAP messages are exchanged between UDP endpoints (the default
port is 5683). CoAP messages, as in HTTP, are either requests or
responses. All messages include a 16-bit message ID used to detect
duplicates and for optional reliability (acknowledgements of received

Figure 2.7 CoAP
messaging model. Requests/Responses

RESTful interactions:

- URIs

- GET/POST/PUT/DELETE semantics

UDP DTLS

C
o

A
P

Messaging

Communication over UDP:

- reliablity/retranmission

- message deduplication

40 2 Standards

messages). In order to match requests and responses, an 8-bit token
field is used. Message IDs and tokens are separate concepts and they
actually work “orthogonally”. The former is used to detect duplicates
of a message due to retransmission that are received by an endpoint;
in other words, no two messages can have the same message ID. The
latter is used to link and match requests and responses; a response
must report the same token as its corresponding request.

Reliability The use of UDP, especially in LLNs, might lead to lost
messages. Reliability cannot be provided by transport layer (as it
would be if TCP were used) and must be ensured at application layer.
The definition of CoAP over other reliable transports, such as TCP,
TLS, and WebSockets, is a work in progress [8]. In CoAP, reliability
is implemented by performing retransmission with exponential
back-off (timeout is doubled at each retransmission). If the sender
of a message does not receive an expected acknowledgement, it
resends the message (using the same message ID). A maximum of
four retransmissions can be performed.

CoAP defines four types of message:
• CON (confirmable): used for messages that must be transmitted

reliably;
• NON (non-confirmable): used for messages for which reliability is

not needed;
• ACK (acknowledgment): used to acknowledge the reception of a

CON message;
• RST (reset): used to cancel a reliable transmission.

Reliability is achieved thanks to the following rules (also shown in
Figure 2.8):

CON [0xabcd]

ACK [0xabcd]

client server

NON [0xabcd]

Reliable transmission Unreliable transmission

Figure 2.8 CoAP reliability.

2.2 The Internet of Things 41

• When a CON request is sent, an ACK response is required to be
sent back to acknowledge the correct reception of the request.

• When a NON request is sent, the response should be returned in a
NON message.

• CON messages provide reliability: if no ACK response is returned
prior to a retransmission timeout (with exponential back-off), the
message is retransmitted.

Piggy-backed and separate responses If a CON CoAP request is sent,
CoAP responses can be either: piggy-backed, if the server can respond
immediately, or separate, if the server cannot respond immediately.

With piggy-backed responses, the responses are included in the
ACK message that acknowledges the request (implicit acknowl-
edgement). With separate responses, the server first sends an ACK
message to acknowledge the request; when the data is available,
the server sends a CON message containing the response. This
is acknowledged by the client with a new ACK message. The two
behaviors are shown in Figure 2.9.

CON [0xabcd]

GET/light

(Token 0x12)

CON [0xabcd]

GET/light

(Token 0x12)

ACK [0xabcd]

2.05 Content

(Token 0x12)

“1000 lm”
CON [0xffff]

2.05 Content

(Token 0x12)

“1000 lm”

client server

Piggy-backed response

ACK [0xabcd]

client server

Separate response

ACK [0xffff]

Figure 2.9 Piggyback response and separate responses.

42 2 Standards

0 1

Token

Options

1 1 1 11 1 1 1 Payload

Figure 2.10 CoAP general message format.

CoAP message format
The general structure of a CoAP message is shown in Figure 2.10.
A CoAP message is formed by a header and, optionally, a payload. The
header’s structure is detailed in Figure 2.11.

Version Ver (2 bits) specifies the protocol version number. The cur-
rent version of CoAP sets these bits to 01 mandatorily.

Type T (2 bits) specifies the type of message. The following values are
defined:

0 = CON is used for confirmable messages
1 = NON is used for non-confirmable messages
2 = ACK is used for acknowledgment messages
3 = RST is used for reset messages.

Token length TKL (4 bits) is the length in bytes of the Token field.
Valid values are 0 to 8, while values 9–15 are reserved. A value of 0
indicates that the message will not include a token.

Code Code (8 bits) describes the message. The code is divided into a
3-bit class and a 5-bit meaning. The following values are defined for
the code:

• Class 0 (000) identifies a request message.
• Class 2 (010) identifies a “Success” response.

0 1

class detailTKLVersion T

Message-ID

Figure 2.11 CoAP message header detail.

44 2 Standards

• Class 4 (100) identifies a “Client error” response (the client should
not repeat the request as it will fail again).

• Class 5 (101) identifies a “Server error” response (the request failed
due to a server error; the client might repeat the request, depending
on the failure reason reported by the server).
A simple check on the presence of any bit set to 1 can be performed

to determine immediately whether the message is a request or a
response. Similarly, a check on the first bit can be performed to
determine immediately whether the response was successful or not.
Finally, a check on last bit can be performed to determine whether a
response refers to a client or a server error. The structure of the code
is an example of how CoAP has been designed in order to simplify
parsing operations and to take processing load away from smart
objects.

For requests, the detail is used to indicate the method of the request:
1 = GET
2 = POST
3 = PUT
4 = DELETE.

For responses, the detail is used to give additional information
related to the response. Some examples of response codes are:
• Success responses: 2.01 Created, 2.02 Deleted, 2.04 Changed, 2.05

Content
• Client error responses: 4.00 Bad Request, 4.02 Bad Option, 4.04 Not

Found, 4.05 Method Not Allowed, …
• Server error responses: 5.00 Internal Server Error, 5.01 Not Imple-

mented, …

Message-ID Message-ID (16 bits) is the message identifier used to
detect duplicates and for optional reliability.

Token (optional) Token (TKL bits) is the message token. It is used to
match responses to requests independently from the underlying mes-
sages. The length in bytes is specified in the TKL field. This field is
optional. If not used, TKL is 0.

CoAP options CoAP request and response semantics are carried in
CoAP messages. Required and optional information for all messages,

2.2 The Internet of Things 45

such as the URI and payload media type, are carried as CoAP options.
Options have the same role as in HTTP headers. Table 2.1 shows all
the options defined in the CoAP specification.

CoAP defines a number of options that can be included in a message.
These options are encoded as TLV (type-length-value). Each option
specifies the option number of the CoAP option (registered on the
IANA registry), the option length, and the option value.

In order to maximize compactness, options are encoded in a very
size-efficient way, called delta encoding. According to delta encoding,
options are sorted in ascending order of their number. Instead of
the actual option number, an option delta (4 bits) is reported; that
is, the option number is calculated as a delta from the preceding
option. The option number can be calculated by simply summing all
the option delta values of the current option and all previous ones.
Since the option delta is 4 bits long, the maximum delta between two
consecutive options is 15 at most. In order to support bigger deltas

Table 2.1 CoAP options.

Option number Option name Format Length (bits)

1 If-Match opaque 0–8
3 Uri-Host string 1–255
4 ETag opaque 1–8
5 If-None-Match empty 0
7 Uri-Port uint 0–2
8 Location-Path string 0–255

11 Uri-Path string 0–255
12 Content-Format uint 0–2
14 Max-Age uint 0–4
15 Uri-Query string 0–255
17 Accept uint 0–2
20 Location-Query string 0–255
35 Proxy-Uri string 1–1034
39 Proxy-Scheme string 1–255
60 Size1 uint 0–4

46 2 Standards

between options, an extended option delta is used. An extended delta
adds 1 or 2 bytes after the option length, depending on the value of
the option delta. The option delta can have the following values:

• 0 to 12 (no extended option);
• 13 (extended option): the value of the option ranges from 13 to

268 – 1 byte for extended delta is added after option length;
• 14 (extended option): the value of the option ranges from 269 to

65804 – 2 bytes for extended are added delta after option length.

If option delta is 13, 1 byte is used for the extended delta. The actual
option number is calculated as (13 + value of extended delta). Since
there is 1 byte added for the delta, the maximum option number
is 13 + 255 = 268. If the option delta is 14, 2 bytes are used for the
extended delta. The actual option number is calculated as (269 +
value of extended delta). Since there are 2 bytes added for the delta,
the maximum option number is 268 + 65,536 = 65,804. The use of
the extended delta is shown in Figure 2.12.

After the option number, the option length (4 bits) is reported. Sim-
ilar to the option number, the option length can be 15 at maximum.
In order to allow for larger values, an extended option length is used.
An extended length adds 1 or 2 bytes after the option length or after
the extended delta (if present), depending on the value of the option
length. The option length can have the following values:

• 0 to 12 (no extended option);
• 13 (extended option): 1 byte for extended length after option length

or after extended delta;
• 14 (extended option): 2 bytes for extended length after option length

or after extended delta.

If the option length is 13, with 1 byte for extended length, the option
length is calculated as (13 + value of extended delta). If option length

1 1 0 1 1 1 1 0

(b)

(a)

Figure 2.12 CoAP extended option delta with (a) 1 byte and (b) 2 bytes added
after the option length.

2.2 The Internet of Things 47

1 1 0 1 1 1 1 0

(b)

(a)

Figure 2.13 CoAP extended option length with (a) 1 byte and (b) 2 bytes added
after the option length or extended delta.

is 14, with 2 bytes for extended length, the option length is calculated
as (269+ value of extended delta). The use of extended length is shown
in Figure 2.13.

Options can be either repeatable or not. Repeatable options report
a delta of 0.

The Uri-Host, Uri-Port, Uri-Path, and Uri-Query options are used
to specify the target resource of a request to a CoAP origin server.
Uri-Path and Uri-Query options are repeatable. The Uri-Host option
specifies the Internet host of the resource being requested. The
Uri-Port option specifies the transport layer port number of the
resource. Each Uri-Path option specifies one segment (segments
are separated by a slash) of the absolute path to the resource.
Each Uri-Query option specifies one argument parameterizing the
resource. Figure 2.14 shows how to proceed to create the CoAP
options for the CoAP URI coap://example.com/people/123.

The Location-Path and Location-Query options together indicate a
relative URI that consists either of an absolute path, a query string or
both. A combination of these options is included in a 2.01 (Created)
response to indicate the location of the resource created as the result
of a POST request.

The Content-Format option indicates the format of the representa-
tion included in the payload. The Accept option can be used to indicate
which Content-Format is acceptable to the client. The representation
format is a content format identifier; that is, a number defined in the
CoAP Content Format Registry. Table 2.2 reports the defined content
format identifiers.

Resource observation
The state of a resource on a CoAP server can change over time.
Clients can get the most recent state in one of two ways: polling or
observing. Polling means performing GET requests periodically. This

48 2 Standards

Option

Name

Uri-Host 3 3 example.com

people

123

11

11 8

11

Type

00000000

(0)

00000011

(3)

00110001 00110010 00110011

(123)

00001000

(8)

00000110

(6)

00000011

(3)

00001011

(11)

01100101 01111000 01100001 01101101 01110000 01101100 01100101 00101110 01100011 01101111 01101101

(example.com)

01110000 01100101 01101111 01110000 01101100 01100101

(people)

Length Value

0

6

3

Uri-Path

Uri-Path

Option

Number

Option

Delta

Option

Value

Option

Length (bytes)

Figure 2.14 Procedure to construct CoAP message options to target URI
coap://example.com/people/123.

Table 2.2 CoAP content formats.

Media type Encoding
Content format
identifier

text/plain charset=utf-8 0
application/link-format - 40
application/xml - 41
application/octet-stream - 42
application/exi - 47
application/json - 50

2.2 The Internet of Things 49

Observer Subject

Registration

Notification

Notification

Notification

Figure 2.15 Observer pattern.

is a typical HTTP pattern. However, polling is inefficient for a number
of reasons. Resources may not change state between two successive
GET requests, thus making some of these requests unnecessary.
Since all requests consume energy in the constrained CoAP server,
this approach can have negative effects on battery-operated objects.
Moreover, if the resource changes its state multiple times between
successive GET requests, for some time the client was not aware of
the most up-to-date state.

The Observe option [9] was introduced to avoid polling (RFC
7641) and to create a more suitable pattern for constrained envi-
ronments. The Observe option implements an observer design
pattern (Figure 2.15): when included in a GET request, the server
is instructed to send notifications to the client whenever the state
of the resource changes. This is similar to a pub/sub model, but
is intrinsically very different. The communication is still based on
requests and responses (rather than subscriptions and publishers),
but multiple responses are sent after a single request. Responses are
linked to the request because they report the same token.

The Observe option has been assigned the option number 6. Its
length can be between 0 and 3 bytes. The option value is an unsigned
integer:

• 0 is used for registration (start observing);
• 1 is used for deregistration (stop observing);

50 2 Standards

• other values are used to sort notifications (since UDP is used, noti-
fications may arrive in the wrong order) or to ignore older notifica-
tions if a more up-to-date state has been notified.
Figure 2.16 shows a typical resource observation. The client per-

forms a GET a request for a specific resource and contextually regis-
ters itself to the server to receive updates related to resource changes
by adding an Observe option with value 0 and a specific token. The
server replies with a 2.05 response with the same token and an Observe
option value including the representation of the resource in the pay-
load. Whenever the state of the resource changes, the server sends
another response to the client with the same token and a different (sub-
sequent) Observe option value. When the client stops being interested
in updates on the resource, it sends another GET request to the server
with the same token but with an Observe option value of 1. The server
will reply with a final response and will no longer send updates.

The Observe option requires the server to maintain a list of
registered clients (endpoint and token) for each resource. This can
introduce an overhead on the smart object. Resources are therefore
not necessarily observable. The server can mark a resource as observ-
able in the CoRE Link Format representation of the link, using an obs
attribute.

Blockwise transfers
CoAP was designed to achieve minimal overhead. In fact, CoAP mes-
sages work well for small payloads. CoAP messages are encapsulated
in UDP packets, which have a maximum size of 65536 bytes. How-
ever, it might happen that applications need to transfer larger pay-
loads. In other cases, constrained servers or clients may not be able to
process payloads of arbitrary sizes. Let us think about a smart object
with a buffer that limits it to accept payloads of 128 bytes, but where
1 kilobyte of data needs to be transferred. Blockwise transfers have
been purposedly defined to divide “large” amounts of data into several
chunks of a given size [10]. The meaning of the term “large” depends on
the specific scenario: it may mean larger than a UDP packet or larger
than the maximum size of an object’s buffer.

RFC 7959 defines two new options called Block1 and Block2 for
this goal. Block1 and Block2 options provide a minimal way to trans-
fer larger representations in a blockwise fashion. The two options are
used to convey the necessary information to split a large payload into
smaller chunks and to control the transfer of each chunk in such a way
that it can be successfully reconstructed at the other endpoint.

Client

Server

Resource

State

R
E

G
IS

T
R

A
T

IO
N

D
E

R
E

G
IS

T
R

A
T

IO
N

2.05 Content

Token: 0xabcd

Observe = 8

17 °C

2.05 Content

Token: 0xabcd

Observe = 9

18 °C

2.05 Content

Token: 0xabcd

Observe = 10

19 °C

2.05 Content

Token: 0xabcd

Observe = 11

18 °C

2.05 Content

Token: 0xabcd

Observe = 12

19 °C

2.05 Content

Token: 0xabcd

Observe = 13

18 °C

GET

Token: 0xabcd

Observe = 1

GET

Token: 0xabcd

Observe = 0

Figure 2.16 CoAP resource observation.

52 2 Standards

NUM M SZX

NUM

NUM

M

M

SZX

SZX

1B

2B

3B

Figure 2.17 Anatomy of a Block option value.

Block1 (option number 27) is related to the request payload and
is typically used in conjunction with POST/PUT requests. Block2
(option number 23) is related to the response payload and is typically
used in conjunction with GET requests. Clients and servers can also
negotiate a block size that can be used for all transfers, using the Size1
and Size2 options.

The value of the Block option is variable in size (0 to 3 bytes) and is
formed by the following three fields, as shown in Figure 2.17:

• NUM: the relative number of the block within a sequence of blocks
with a given size.

• M (1 bit): a “more” bit, indicating whether more blocks will follow
or this is the last block.

• SZX (3 bits): the size exponent of the block; SZX can be a number
from 0 to 6, while the value is reserved and cannot be used. The
actual size of the block is computed as 24+SZX , which means that
blocks can have a size from 24 to 210 bytes.

In the following examples, the notation 2:0/1/128 means that the
message contains a Block2 option, NUM = 0, M = 1, and SZX =
log2128 − 4 = 3.

Figure 2.18 shows the use of the Block2 option to perform the block-
wise transfer of a resource requested by a client. The client starts by
requesting the /status resource on the server by issuing a GET request.
The server, in a piggy-backed response, replies with a 2.05 response,
which includes a Block2 option, with the values 0/1/128. This means
that this is the first block (NUM= 0), another block will follow (M= 1),
and that the size of the block is 128 bytes. After receiving the first
block, the client performs another request for the next block. To do

Client Server

CON [MID = 1234], GET, /status

ACK [MID = 1234], 2.05 Content, 2:0/1/128

CON [MID = 1235], GET, /status, 2:1/0/128

ACK [MID = 1235], 2.05 Content, 2:1/1/128

CON [MID = 1236], GET, /status, 2:2/0/128

ACK [MID = 1236], 2.05 Content, 2:2/0/128

Get the third block

Block 2/more to come/128 bytes

Block 3/more to come/up to 128 bytes

Block 1/more to come/128 bytes

Get the resource

Get the second block

Figure 2.18 Block2 option (response payload) transfer example.

54 2 Standards

so, it includes a Block2 option in the request, specifying the parame-
ters of the block: 1/0/128. NUM = 1 means that the requested block
is the second. M does not affect the request. The client also asks for a
block 128 bytes in size. The server responds in the same way as before,
with a Block2 option with value 1/1/128. The client then requests the
next block. In this case, the response’s Block2 option has a value of
2/0/128. M = 0 indicates that this is the last block. In this case, the
reported size of 128 bytes indicates that the block will be of up to 128
bytes in size. This response terminates the blockwise transfer.

Figure 2.19 shows the use of the Block1 option to perform a
blockwise transfer of a resource that a client intends to post. The
client starts by sending the representation of a /status resource on
the server by issuing a PUT request. The request contains a Block1
option, with the values 0/1/128. This means that this is the first block
(NUM = 0), another block will follow (M = 1), and that the size of the
block is 128 bytes. The server, in a piggy-backed response, replies with
a 2.31 response (meaning that it is ready to accept more blocks), which
includes a Block1 option, with the values 0/1/128. After sending the
first block, the client performs another request to transfer the next
block. To do so, it includes a Block1 option in the request, with value
1/1/128. NUM = 1 means that the requested block is the second.
M does not affect the request. The client also asks for a block 128
bytes in size. The server responds in the same way as before, with a
Block1 option with value 1/1/128. The client then requests the last
block, including a Block1 option with value 2/0/128. M = 0 indicates
that this is the last block. In this case, the reported size of 128 bytes
indicates that the block will be of up to 128 bytes in size. The server
sends a 2.04 response, which terminates the blockwise transfer.

Multicast communication CoAP supports multicast, which targets
multiple endpoints with a single request. For example, a single
POST request targeting a multicast group address, such as POST
all.floor1.building.example.com/status/lights, can be used to switch
on all lights in a building with a single request, rather than requiring
a client to issue multiple unicast requests targeting each server
(as shown in Figure 2.20). RFC 7390 [11] defines mechanisms to
manage CoAP groups.

Resource discovery and resource directory
Resource discovery is based on discovering links (URIs) to resources
hosted by a CoAP service endpoint. CoAP supports resource discov-
ery through a standard mechanism based on web linking [12] and

Client Server

CON [MID = 1234], PUT, /options, 1:0/1/128

ACK [MID = 1234], 2.31 Continue, 1:0/1/128

CON [MID = 1235], PUT, /options, 1:1/1/128

ACK [MID = 1235], 2.31 Continue, 1:1/1/128

CON [MID = 1236], PUT, /options, 1:2/0/128

ACK [MID = 1236], 2.04 Changed, 1:2/0/128

Send the third block

Block 3/more to come/up to 128 bytes

Send the resource

Block 1/more to come/128 bytes

Send the second block

Block 2/more to come/128 bytes

Figure 2.19 Block1 option (request payload) transfer example.

56 2 Standards

CoAP

client

Figure 2.20 CoAP group communication.

Client Server

GET coap://[ff02::1]/.well-known/core

2.05 Content

Content-Format: application/link-format

</sensors/temp>;ct=50;rt="temperature-C";if="sensor",

</actuators/light>;ct=50;rt="light";if="toggle"

Figure 2.21 Resource discovery in CoAP.

the CoRE Link Format [13]. A client can issue a request for the
/.well-known/core path on a server (or targeting a CoAP multicast
group) and receive a list of available resources on the endpoint,
formatted in CoRE Link Format (Figure 2.21). Each link contains a list
of attributes that describe the resource being linked (e.g., obs means
observable; rt indicates the resource type; ct indicates the content
type). The if attribute defines the set of methods that the resource
accepts (CoRE interface). More details on CoRE Link Format and
CoRE interfaces can be found in Sections 3.9.1 and 3.9.2, respectively.

Sometimes direct discovery of resources through /.well-known/core
is not feasible. For instance, nodes may be sleeping or multicast traffic
may be inefficient. In order to simplify the task of resource discovery,
a resource directory (RD) can be used. An RD is a CoAP endpoint

2.2 The Internet of Things 57

The Internet

Server

Server

Proxy

C

C

C

C

CoAP

CoAP
CoAP

CoAP

ClientHTTP

HTTP

Constrained Environments

C

Figure 2.22 HTTP-to-CoAP proxying.

that can be used as a registry to register, maintain, lookup and
remove resource descriptions [14]. It is a centralized registry that
contains CoRE links to resources hosted on several endpoints. The
RD supports a function set for adding, updating, and removing links
and a function set for lookup operations. The RD can be queried to
filter results on the basis of specific attributes (say, a specific resource
type).

HTTP/CoAP proxying
There are several reasons that motivate the use of HTTP/CoAP prox-
ying functionalities. Figure 2.22 shows a complex hybrid Internet/IoT
scenario with smart objects in constrained environments interacting
with traditional hosts on the Internet. This scenario involves the use
of different application protocols, such as HTTP and CoAP. Direct
CoAP communication might occur, but not all traditional Internet
clients may support CoAP or be aware of the fact that a particular
resource resides in a constrained network. In order to allow the
necessary cross-protocol communication, an intermediate proxy
node must be introduced.

Other motivations for the introduction of this network element are:

• to shield the constrained network from the outside, say for security
reasons such as protection against DoS attacks;

• to support integration with the existing web through legacy HTTP
clients;

• to ensure high availability on resources through caching;
• to reduce network load;

58 2 Standards

• to support data formats that might not be suitable for constrained
applications, such as XML.

RFC 7252 defines the following terms:

• origin server: a CoAP server on which a given resource resides or is
to be created (see Figure 2.23a);

• intermediary: a CoAP endpoint that acts both as a server and as a
client towards an origin server (see Figure 2.23b);

• proxy: an intermediary that forwards requests and relays back
responses; it can perform caching and protocol translation
(e.g. HTTP-to-CoAP) (see Figure 2.23c);

• CoAP-to-CoAP proxy: a proxy that maps a CoAP request to another
one;

• cross-proxy: a proxy that performs protocol translation from/to
CoAP to/from another protocol, such as HTTP;

• HTTP-to-CoAP proxy: a proxy that translates HTTP requests to
CoAP requests (Figure 2.23d).

C OS

POST
POST

C OS

POST

I
POST

C OS

GET 1

P

GET 1

C

GET 2 2.05

2.05

2.05
CACHE

C OS

POST

P
POST

HTTP CoAP

(a)

(b)

(c)

(d)

Figure 2.23 (a)
Direct endpoint
communication
to origin server;
(b) communica-
tion through
intermediary
node; (c) proxy-
based
communication.
(d) HTTP-to-
CoAP proxy.

2.2 The Internet of Things 59

A HTTP-to-CoAP proxy can thus be used to allow incoming
HTTP request generated by HTTP clients to be translated into CoAP
requests that can be forwarded and served by CoAP servers. A reverse
translation is then required, allowing CoAP responses to be trans-
formed into HTTP responses that can be sent back to the client. CoAP
has been defined with the goal of mapping to HTTP easily, allowing
easy integration with the web. CoAP-to-HTTP translation is fairly
straightforward, as CoAP is a logical subset of HTTP. CoAP methods,
response codes, and options have many similarities to HTTP.

RFC 8075 [15] defines rules for mapping HTTP messages to CoAP
messages. These rules apply to URI mappings, request method map-
pings, response code mappings, and HTTP header to CoAP option
mappings.

URI mapping HTTP-to-CoAP URI mapping is based on URI encap-
sulation (a CoAP URI is included in an HTTP URI), as shown in
Figure 2.24.

Request method mapping Some HTTP methods and CoAP methods
are easily mapped:

• HTTP GET ⇔ CoAP GET.
• HTTP POST ⇔ CoAP POST.
• HTTP PUT ⇔ CoAP PUT.
• HTTP DELETE ⇔ CoAP DELETE.

Other HTTP methods cannot be mapped.

h t t p : / / p . e x a m p l e . c o m / h c / c o a p : / / s . e x a m p l e . c o m / l i g h t

HTTP proxy URI CoAP resource URI

HTTP

client
CoAP

server

HTTP

server

CoAP

client

HTTP-to-CoAP

proxy

coap://s.example.com/light

http://p.example.com/hc

Figure 2.24 HTTP-to-CoAP URI mapping.

60 2 Standards

Table 2.3 HTTP/CoAP response code mappings.

CoAP response code HTTP status code

2.01 Created 201 Created
2.02 Deleted 200 OK

204 No Content
2.03 Valid 304 Not Modified

200 OK
2.04 Changed 200 OK

204 No Content
2.05 Content 200 OK
4.00 Bad Request 400 Bad Request
4.02 Bad Option 400 Bad Request
4.04 Not Found 404 Not Found
4.05 Method Not Allowed 405 Method Not Allowed
5.00 Internal Server Error 500 Internal Server Error
5.01 Not Implemented 501 Not Implemented
5.02 Bad Gateway 502 Bad Gateway

Response code mapping Table 2.3 shows the mapping between CoAP
response codes and HTTP response codes.

Open issues The following are some questions related to protocol
mapping that derive from the different natures of HTTP and CoAP:

• What HTTP features are not present in CoAP and vice versa
• How can HTTP methods that do not exist in CoAP be mapped

(e.g., HEAD, OPTIONS)?
• What are resource observations in HTTP?
• What are group communications in HTTP?

2.2.5.2 CoSIP Protocol Specification
There are many applications in both constrained and non-constrained
environments that feature non-request/response communication
models. Some of these applications require the creation and man-
agement of a “session”, a term that we use to refer to any exchange
of data between an association of participants. For two participants,

2.2 The Internet of Things 61

the session may involve the sending of one or (probably) more data
packets from one participant to the other, in one or both directions.
Unidirectional sessions may be initiated by either the sender or the
receiver. Examples of sessions in IoT scenarios may be the data flow
generated by a sensor (measurement samples) and sent to recipient for
further processing, or data streams exchanged by two interacting toys.

Although in principle CoAP encapsulation could also be used for
carrying data in a non-request/response fashion, for example by using
the CoAP POST request in non-confirmable mode, or by using the
CoAP “observation” model, it is evident that it would be much more
efficient to set up a session between constrained nodes first, and then
perform a more lightweight communication without carrying unnec-
essary CoAP header fields for each data packet. The data communica-
tion would be in accord with the network, transport, and application
parameters negotiated during the session setup.

Session Initiation Protocol (SIP) is the standard application protocol
for establishing application-level sessions [5]. It allows the endpoints
to create, modify, and terminate any kind of (multi)media session:
VoIP calls, multimedia conferences, or data communication. Once
a session has been established, the media are typically transmitted
using other application-layer protocols, such as RTP and RTCP [16],
or as raw UDP data, directly between the endpoints, in a peer-to-peer
fashion. SIP is a text protocol, similar to HTTP, which can run on
top of several transport protocols, such as UDP (default), TCP, or
SCTP, or on top of secure transport protocols such as TLS and
DTLS. Session parameters are exchanged as SIP message payloads;
a standard protocol used for this purpose is the session description
protocol [17]. The SIP protocol also supports intermediate network
elements, which are used to allow endpoint registration and session
establishment. Examples include SIP proxy servers and registrar
servers. SIP also defines the concepts of transaction, dialog, and call
as groups of related messages, at different abstraction layers.

Although SIP has been defined for Internet applications, we may
imagine also using it in constrained IoT scenarios. Note that SIP
already includes mechanisms for subscribe/notify communication
paradigms [18] and for resource directories, which are particularly
useful in IoT scenarios, and for which proper CoAP extensions are
currently being specified [9, 14].

The main drawback of using the standard SIP protocol in con-
strained environments is the large size of text-based SIP messages

62 2 Standards

(compared to other binary protocols such CoAP), and the processing
load required for parsing such messages.

A constrained version of SIP, named “CoSIP”, designed to allow
constrained devices to instantiate communication sessions in a
lightweight and standardized fashion and can be adopted in M2M
application scenarios, has been proposed. Session instantiation can
include a negotiation phase, in which the parameters that will be used
for all subsequent communication are agreed. As proposed, CoSIP
is a binary protocol, which maps to SIP, just as CoAP does to HTTP.
CoSIP can be adopted in various application scenarios, such as service
discovery and pub/sub applications.

Related work on session initiation
Smart objects are typically required to operate using low-power
and low-rate communication methods, featuring unstable (lossy)
links, such as IEEE 802.15.4. These are usually termed low-power
wireless personal area networks (LoWPANs) or low-power and lossy
networks (LLNs). The Internet Engineering Task Force (IETF) has
set up several working groups in order to address issues related to
bringing IP connectivity to LoWPAN smart objects. In particular, the
6LoWPAN (IPv6 over Low-power WPAN) working group [19] was
chartered to define mechanisms to optimize the adoption of IPv6
in LoWPANs and the ROLL (Routing over Low-power and Lossy
Networks) working group [20] was formed to develop optimal IPv6
routing in LLNs. Finally, the CoRE (Constrained RESTful Environ-
ments) working group [21] was chartered to provide a framework for
RESTful applications in constrained IP networks. It is working on
the definition of a standard application-level protocol, namely CoAP,
which can be used to let constrained devices communicate with any
node, either on the same network or on the Internet, and provides a
mapping to HTTP REST APIs. CoAP is intended to provide, among
others, create-read-update-delete (CRUD) primitives for resources
of constrained devices and pub/sub communication capabilities.
While the work on CoAP is already at an advanced stage, the CoRE
working group is also investigating mechanisms for discovery and
configuration, but work on these issues is still at an early stage and
therefore open to proposals.

The “observer” CoAP extension [9] allows CoAP clients to observe
resources (via a subscribe/notify mechanism) and to be notified when
the state of the observed resource changes. This approach requires

2.2 The Internet of Things 63

the introduction of a new CoAP Observe option to be used in GET
requests in order to let the client register its interest in the resource.
The server will then send “unsolicited” responses back to the client,
echoing the token it specified in the GET request and reporting an
Observe option with a sequence number used for reordering purposes.
As we will describe later, we envision that the instantiation of a ses-
sion could significantly reduce the number of transmitted bytes, since,
after the session has been established, only the payloads need be sent
to the observer, thus eliminating the overhead due to the inclusion of
the CoAP headers in each notification message.

As for service discovery, the CoRE working group has defined a
mechanism, called a resource directory (RD) [14], to be adopted in
M2M applications. An RD is necessary because of the impracticality
of direct resource discovery, due to the presence of duty-cycled nodes
and unstable links in LLNs.

Each CoAP server must expose an interface /.well-known/
core to which a client can send requests for discovering available
resources. The CoAP server will reply with the list of resources and,
for each resource, an attribute that specifies the format of the data
associated with it. The CoAP protocol, however, does not specify how
a node joining the network for the first time must behave in order to
announce itself to the RD node. In RFC 7390 [11], this functionality
is extended to multicast communications. In particular, multicast
resource discovery is useful when a client needs to locate a resource
within a limited, local scope, and that scope supports IP multicast.
A GET request to the multicast address specified by the standard
is made for /.well-known/core. Of course multicast resource
discovery works only within an IP multicast domain and does not
scale to larger networks that do not support end-to-end multicast.

The registration of a resource in the RD is performed by sending a
POST request to it. Discovery can be accomplished by issuing a GET
request to the RD, targeting the .well-known/core URI. This dis-
covery mechanism is totally self-contained in CoAP as it uses only
CoAP messages.

The CoSIP protocol provides an alternative mechanism to register
resources on an RD, which may also be called a CoSIP registrar server.
The advantage of using a CoSIP-based registration mechanism is that
it might be possible to register resources other than those reachable
through CoAP, thus providing a scalable and generic mechanism for

64 2 Standards

service discovery in constrained applications with a higher degree of
expressiveness, such as setting an expiration time for the registration.

CoSIP
In both constrained and non-constrained environments, there are
many applications in which it may either be necessary or simply
advantageous to negotiate an end-to-end data session. In this case
the communication model consists of a first phase in which one
endpoint requests the establishment of a data communication and,
optionally, both endpoints negotiate communication parameters
(transfer protocols, data formats, endpoint IP addresses and ports,
encryption algorithms and keying materials, and other application
specific parameters) of the subsequent data sessions. This may be
useful for both client-server and peer-to-peer applications, regardless
of whether the data sessions evolve according to a request/response
model. The main advantage is that all such parameters, including
possible resource addressing, may be exchanged in advance, while no
such control information is required during data transfer. The longer
the data sessions, the more advantageous this approach is compared
to per-message control information. In addition, for data sessions that
may vary in format or other parameters over time, such changes may
be supported by performing session renegotiation.

A standard way to achieve all this in an IP-based network is by using
SIP [5]. SIP has been defined as a standard protocol for initiating,
modifying and tearing down any type of end-to-end multimedia
session. It is independent of the protocol used for data transfer and
from the protocol used for negotiating the data transfer (such a
negotiation protocol can be encapsulated transparently within the
SIP exchange). In order to simplify the implementation, SIP reuses
the message format and protocol fields of HTTP. However, in contrast
to HTTP, SIP works by default on UDP, by directly implementing all
mechanisms for a reliable transaction-based message transfer. This is
an advantage in duty-cycled constrained environments, where prob-
lems may arise when trying to use connection-oriented transports,
such as TCP. However, SIP may also run on other transport protocols,
such as TCP, SCTP, TLS, or DTLS.

Unfortunately, SIP derives from HTTP the text-based protocol
syntax that, even if it simplifies the implementation and debugging,
results in larger message sizes and bigger processing costs and
probably with larger source code sizes (RAM footprint) required for

2.2 The Internet of Things 65

message parsing. Note that the SIP standard also defines a mechanism
for reducing the overall size of SIP messages; this is achieved by using
a compact form of some common header field names. However,
although this allows for a partial reduction of the message size, it may
still result in big messages, especially when compared to other binary
formats, for example those defined for CoAP.

For this reason we have tried to define and implement a new binary
format for SIP in order to take advantages of the functionalities already
defined and supported by SIP methods and functions, together with a
very compact message encoding. We naturally called such new pro-
tocol CoSIP, standing for Constrained Session Initiation Protocol, or
simply Constrained SIP. Due to the protocol similarities between SIP
and HTTP, in order to maximize the reuse of protocol definitions and
source code implementations, we decided to base CoSIP on the same
message format as defined for CoAP, thanks to the role that CoAP plays
with respect to HTTP. However, it is important to note that, while
CoAP must define new message exchanges, mainly due to the fact that
it has to operate in constrained and unreliable network scenarios over
the UDP transport protocol, and while HTTP works over TCP, CoSIP
completely reuses all of the SIP message exchanges and transactions
already defined by the SIP standard, since SIP already works over unre-
liable transport protocols such as UDP.

SIP is structured as a layered protocol. At the top there is the
concept of dialog: a peer-to-peer relationship between two SIP
nodes that persists for some time and facilitates sequencing of
different request–response exchanges (transactions). In CoAP there
is no concept equivalent to SIP dialogs, and, if needed, it has to be
explicitly implemented at application level. Under the dialog there is
the transaction layer: the message exchange that comprises a client
request, the ensuing optional server provisional responses and the
server’s final response. The concept of a transaction is also present
in CoAP: requests and responses are bound and matched through
a token present in the message header field. Under the transaction
there is the messaging layer where messages are effectively formatted
and sent through an underlying non-SIP transport protocol (such as
UDP or TCP).

Instead of completely re-designing a session initiation protocol
for constrained environments, we propose to reuse SIP’s lay-
ered architecture, by simply re-defining the messaging layer in a
constrained-oriented binary encoding. To this end, we propose to

66 2 Standards

0

Ver

=1

Type

=1

TKL

=0

2 4 8

Code

Options

Payload

1 1 1 1 1 1 1 1

Message ID

16 31

Figure 2.25 CoSIP message format.

reuse the same CoAP message syntax [7]. Figure 2.25 shows the CoSIP
message format derived from CoAP. A CoSIP message contains, in
sequence:

• the 2-bit version field (set to 1, i.e. CoSIP version 1);
• the 2-bit type field (set to 1 = Non-confirmable);
• the 4-bit CoAP TKL field (set to 0);
• the 8-bit Code field that encodes request methods (for request

messages) and response codes (for response messages);
• the 16-bit CoAP message ID field;

possibly followed by by more option fields. If a CoSIP message body
is present, as in CoAP it is appended after the options field, prefixed
by an 1-byte marker (0xFF) that separates CoSIP header and payload.
Options are encoded, as in CoAP, in Type-Length-Value (TLV) format
and encode all CoSIP header fields (From, Via, Call-ID, etc.) included
in the CoSIP message.

Since CoSIP re-uses the transaction layer of SIP, no CoAP optional
Token field is needed [7] and the TKL (Token length) field can be
permanently set to 0. Moreover, since CoSIP already has reliable mes-
sage transmission (within the transaction layer), no Confirmable (0),
Acknowledgement (2), or Reset (3) message types are needed, and the
only type of message that must be supported is Non-confirmable (1).

A comparison of the layered architectures of CoSIP and SIP is shown
in Figure 2.26.

Besides the above binary message, a CoSIP message can be virtu-
ally seen as a standard SIP message, formed by one request-line or one

2.2 The Internet of Things 67

(a) (b)

Figure 2.26 Comparison of the layered architectures of: (a) SIP and (b) CoSIP.

status-line (depending if the message is a request or a response), fol-
lowed by a sequence of SIP header fields, followed by a message body,
if preset. In particular, SIP header fields are logically the same as in
the standard SIP protocol, but encoded in the corresponding CoSIP
Options. For each SIP header field, a different option number has been
set, and a suitable encoding mechanism has been defined. In particular,
general rules that we followed are:

• IP addresses are encoded as a sequence of 5 bytes for IPv4 and 17
bytes for IPv6, where the first byte discriminates the type of address,
i.e. 1 = IPv4 address, 2 = IPv6 address, 3 = FQDN (fully qualified
domain name).

• For header field parameters, when possible, the parameter name is
implicitly identified by the position of its value in the correspond-
ing binary-encoded CoSIP option; otherwise, parameter names are
substituted by parameter codes. In the latter case the parameter is
encoded as type-value pair (for fixed size values) or type-length-vale
tuples (for variable size values).

• Random tokens, such as SIP “branch” values, SIP “from” and “to”
tags, “call-id”, etc. are generated as arrays of a maximum 6 bytes.

One problem in reusing the current CoAP message format [7] is
that in CoAP the 8-bit code field is used to encode all possible request
methods and response codes. In particular, in CoAP, for response mes-
sages, the 8-bit code field is divided into two subfields:

• the first three bits (class) encodes the CoAP response classes 2xx
(Success), 4xx (Client error), and 5 (Server error);

68 2 Standards

• the remaining 5 bits (details) encode the sub-type of the response
within a given class type. For example a 403 “Forbidden” response
is encoded as 4 (class) and 03 (details).

Unfortunately, this method limits the number of possible response
codes that can be used (for example, using only 5 bits for the details
subfield does not allow the direct encoding of response codes such
as 480 “Temporarily unavailable” or 488 “Not acceptable here”). In
CoSIP, we overcome this problem by encoding within the code field
only the response class (2xx, 4xx, etc.) and by adding an explicit option
field, called response-code, which encodes the complete response code
(e.g. 488), including the response sub-type (88, in the case of response
code 488). The size of the response-code option is 2 bytes. Moreover,
in order to support all SIP/CoSIP response codes we also added the
classes 1xx (Provisional) and 3xx (Redirect) used in SIP.

IoT application scenarios
In this section, we will describe the most significant IoT applications,
in order to provide an overview of the capabilities and typical usage
of the CoSIP protocol. In all the scenarios, we consider a network ele-
ment called an IoT gateway, which includes also a HTTP/CoAP proxy
that can be used by nodes residing outside the constrained network to
access CoAP services.

CoAP service discovery CoSIP allows smart objects to register the ser-
vices they provide to populate a CoSIP registrar server, which serves
as an RD. The term registrar server is interchangeable with RD here.

Figure 2.27 shows a complete service registration and discovery
scenario enabled by CoSIP. We consider a smart object that includes
a CoAP server, which provides one or more RESTful services, and a
CoSIP agent, which is used to interact with the CoSIP registrar server.
The smart object issues a REGISTER request (a), which includes reg-
istration parameters, such as the address of record (AoR) of the CoAP
service and the actual URL that can be used to access the resource
(contact address). Note that, while the original SIP specification states
that the To header must report a SIP or SIPS URI, CoSIP allows any
scheme URI to be specified in the To header, for example a CoAP URI.
Upon receiving the registration request, the registrar server stores
the AoR-to-contact address mapping in a location database and then
sends a 200 OK response.

2.2 The Internet of Things 69

Figure 2.27 CoAP service discovery. The numbers indicate the order of
exchanged messages.

When a REST client, either CoAP or HTTP, is willing to discover the
services, it can issue a GET request targeting the .well-known/
core URI, which is used as a default entry point to retrieve the
resources hosted by the RD, as defined in RFC 6690 [13]. The GET
request is sent to the HTTP/CoAP proxy, which returns a 200 OK
response (in the case of HTTP) or a 2.05 Content response containing
the list of services in the payload (in the case of CoAP).

Session establishment A session is established when two endpoints
need to exchange data. CoSIP allows the establishment of session in
a standard way without binding the session establishment method to
a specific session protocol. For instance, CoSIP can be used to negoti-
ate and instantiate a RTP session between constrained nodes. Once a
session has been established, the data exchange between the endpoints
occurs (logically) in a peer-to-peer fashion.

Figure 2.28 shows how CoSIP can be used to establish a session
between two endpoints. Let us assume an IoT agent (IoT-A1) iden-
tified by the CoSIP URI cosip:user1@domain, and which includes
at least a CoSIP agent, has registered its contact address to an
IoT gateway in the same way as described in the previous subsec-
tion, on CoAP service discovery (steps 1 and 2). If another IoT-A2
cosip:user2@domain wants to establish a session with IoT-A1, it will
send a suitable INVITE request to the IoT gateway, which will act as

70 2 Standards

Figure 2.28 CoSIP session establishment.

a CoSIP proxy, relaying the request to IoT-A1 (steps 3 and 4). IoT-A1
will then send a 200 OK response to IoT-A2 (steps 5 and 6), which will
finalize the session creation by sending an ACK message to IoT-A2
(steps 7 and 8).

At this point the session has been set up and data flow between
IoT-A1 and IoT-A2 can occur directly. The session establishment pro-
cess can be used to negotiate communication parameters, for instance
by encapsulating Session Description Protocol (SDP) [17] or an equiv-
alent in the message payload. As we will show in the protocol evalua-
tion section below, setting up a session, rather than using CoAP, both
in a request/response or subscribe/notify paradigm, is a very efficient
way to avoid the overhead due to carrying headers in each exchanged
message, since eventually only the payloads will be relevant for the
application.

Subscribe/notify applications IoT scenarios typically involve smart
objects, which may well be battery-powered. It is crucial to adopt
energy-efficient paradigms for OS tasks, application processing,
and communication. In order to minimize the power consumed,
duty-cycled smart objects are used. Sleepy nodes, especially those
operating in LLNs, are not guaranteed to be reachable, so it is more
appropriate for smart objects to use a subscribe/notify (pub/sub)
approach to send notifications regarding the state of their resources,
rather than receiving and serving incoming requests. Such behavior

2.2 The Internet of Things 71

Figure 2.29 Subscribe/notify applications with CoSIP.

can be achieved by leveraging on the inherent capabilities of SIP, and
therefore of CoSIP, as sketched in Figure 2.29.

The depicted scenarios consider several pub/sub interactions: notifi-
cations can be sent either by a notifier IoT agent (IoT-AN) or by an IoT
gateway, and subscribers can be either subscriber IoT agents (IoT-AS),
IoT gateways, or generic remote subscribers. Let us assume that all
the notifiers have previously registered with their CoSIP registrar
server (this step is also called the publishing phase in a typical pub/sub
scenario). The standard subscription/notification procedure is the
following:

1) The subscriber sends a SUBSCRIBE request to the notifier, also
specifying the service events it is interested in.

2) The notifier stores the subscriber’s URI and event information and
sends a 200 OK response to the subscriber.

3) Whenever the notifier’s state changes, it sends a NOTIFY request
to the subscriber.

4) The subscriber sends a 200 OK response back to the notifier.

Figure 2.29 reports all the use cases when pub/sub might be used.
An IoT-AS can subscribe to the service of an IoT-AN in the same
network, if it is willing to perform some task, such as data/service
aggregation. The IoT gateway can subscribe to an IoT-AN in order to
collect sensed data, say to store them in the cloud, without the need

72 2 Standards

to periodically poll for data. Finally, the IoT gateway itself might be
a notifier for remote subscribers that are interested in notifications
for specific services provided by the gateway, which may or may not
be the same of existing IoT-AN nodes managed by the gateway. Note
that, it might be possible to have interactions with legacy SIP agents
if the IoT gateway is also able to perform SIP/CoSIP proxying.

The adoption of CoSIP in IoT scenarios makes it easy to set up
efficient pub/sub-based applications in a standard way, thus allowing
for seamless integration and interaction with the Internet. Moreover,
the valuable experience gained in recent years with SIP, both in terms
of technologies and implementation, can be reused to speed up the
implementation and deployment of session-based applications.

Protocol evaluation
In order to evaluate the performance of CoSIP, an implementation of
the protocol has been developed together with some test applications.
We decided to focus on network performance as a metric by measur-
ing the amount of network traffic generated by the test applications.
The CoSIP protocol was implemented in Java, because of its simplicity,
cross-platform support, and the existence and availability of SIP and
CoAP libraries [22–24]. The source code of the CoSIP implementation
is freely available [25–27].

The results show that there are many advantages to using CoSIP,
both in constrained and non-constrained applications. The first eval-
uation compares CoSIP and SIP in terms of bytes transmitted for the
signaling related to the instantiation and termination of a session. Each
CoSIP request and response message is separately compared with its
SIP counterpart. The results are illustrated in Figure 2.30. Table 2.4
shows the compression ratio for each CoSIP/SIP message pair. Regard-
ing the session as a whole, CoSIP yields an overall compression ratio
of slightly more than 0.55.

Another evaluation showed the advantage of using sessions in
constrained applications. Figure 2.31 shows the amount of network
traffic (in bytes) generated by two constrained applications: the first
application uses CoSIP to establish a session and then performs the
data exchange by sending the payloads over UDP; the second is a
standard CoAP-based application where the communication occurs
between a CoAP client and a CoAP server, using confirmed CoAP
POST requests. In both cases data is sent at the same rate of one data
message every 2s. The figure shows that the lightweight CoSIP session

2.2 The Internet of Things 73

600

500

400

300

M
e
s
s
a
g
e
 S

iz
e
 [
B

y
te

s
]

200

100

0
INVITE 100 Trying 180 Ringing 200 OK

Session Message

ACK BYE 200 OK

CoSIP session
SIP session

Figure 2.30 Transmitted bytes for CoSIP and SIP session (signaling only).

Table 2.4 Comparison between CoSIP and SIP signaling (bytes per
message) for session instantiation and establishment.

Message type CoSIP (bytes) SIP (bytes) Compression Ratio

INVITE 311 579 0.537
100 Trying 141 279 0.505
180 Ringing 173 372 0.465
200 OK 293 508 0.577
ACK 216 363 0.595
BYE 183 309 0.592
200 OK 162 274 0.591

is instantiated in a very short period of time and, after the session has
been established, few bytes are exchanged between the endpoints. On
the other hand, the CoAP-based application has no overhead at the
beginning due to the instantiation of the session but, soon afterwards,
the amount of traffic generated by the application exceeds that of the

74 2 Standards

1600

CoAP

CoSIP

1400

1200

1000

800

T
ra

n
s
m

it
te

d
 B

y
te

s

600

400

200

0
0 50 100

Time [s]

150

Figure 2.31 Transmitted bytes in a CoSIP session vs. CoAP confirmed POST
requests and responses.

CoSIP-based application, since in the CoAP-based scenario, data is
exchanged within CoAP messages, resulting in an unnecessary CoAP
overhead.

Note that in the depicted scenario the CoSIP signaling used for ses-
sion initiation includes all SIP header fields normally used in stan-
dard non-constrained SIP applications; that is, no reduction in term of
header fields has been performed. Instead, for the CoAP application,
we considered only mandatory CoAP header fields, resulting in the
best-case scenario for CoAP in terms of CoAP overhead (minimum
overhead). This means that in other CoAP applications, the slope of
the line could become even steeper, thus reducing the time when the
break-even point with CoSIP is reached.

Conclusions
Here we have introduced a low-power protocol called CoSIP, for
establishing sessions between two or more endpoints targeting
constrained environments. Many applications, both in constrained
and non-constrained scenarios, do benefit from establishing a session

2.2 The Internet of Things 75

between the participants in order to minimize the communication
overhead and to negotiate parameters related to the data exchange
that will occur. The CoSIP protocol is a constrained version of the
SIP protocol, designed to minimize the amount of network traffic and
therefore energy consumption, and targeted at IoT scenarios.

A similar effort in trying to minimize the amount of data in IoT
and M2M applications is being carried on in standardization orga-
nizations, such as the IETF CoRE working group, which is currently
defining a protocol (CoAP) to be used as a generic web protocol
for RESTful constrained environments, and which maps to HTTP.
Similarly, in this work we have applied the same approach to define
a protocol for session instantiation, negotiation, and termination.
We have described some interesting IoT scenarios that might ben-
efit from using such a protocol, namely service discovery, session
establishment, and services based on a subscribe/notify paradigm.
A Java-language implementation of CoSIP has been developed and
tested to evaluate the performance of the new protocol, by measuring
the number of transmitted bytes compared to solutions based on
SIP and CoAP. The results show that applications that use CoSIP
can outperform other SIP- and CoAP-based applications in terms
of generated network traffic: SIP signaling can be compressed by
nearly 50% using CoSIP, and long-running applications that may
use CoAP for sending the same type of data to a given receiver may
be better implemented with CoSIP, since no CoAP overhead has to
be transmitted along with each transmitted data message, leading
to a packet size and per-packet processing reduction; packet size
reduction in turn may reduce the need for packet fragmentation
(in 6LoWPAN networks) and the energy consumption of the nodes
involved in the data exchange.

Future work will include exhaustive experimentation, both in
simulation environments and a real-world testbeds comprising a
variety of heterogeneous devices. These are currently being set up
at the Department of Information Engineering of the University of
Parma. The aim is to evaluate the performance of the CoSIP protocol
both in terms of energy consumption and delay. The tests will focus
on the time required to set up a session in different scenarios, such as
in IEEE 802.15.4 multi-hop environments, and the measurement of
energy consumption compared to standard CoAP communication.

Two different perspectives will be analyzed: end-to-end delay
between the actual session participants and energy consumption on

76 2 Standards

the intermediate nodes which will be indirectly involved in the
session, responsible for multi-hop routing at lower layers. The target
platforms will be both constrained and non-constrained devices
for session participants and relay nodes, in order to provide a thor-
ough evaluation in heterogeneous devices operating under different
conditions.

2.3 The Industrial IoT

IIoT still lacks a reference networking/communication platform. Sev-
eral initiatives are being developed: in the following, we comment on
a few relevant ones.

The German Plattform Industrie 4.0 is a candidate to become a Euro-
pean standard platform. This process is taking place within EU insti-
tutions, and individual European countries have their own industrial
transformation projects in which the IIoT takes center stage, including:

• Smart Factory (The Netherlands)
• Factory 4.0 (Italy)
• Industry of the Future (France).

Other major efforts include the Japanese Robot Revolution initiative
and the Industrial Internet Consortium (IIC). The latter is a consor-
tium co-founded by US industrial giant GE, which also coined the term
Industrial Internet and is one of the major players in the IIoT. The IIC
today is busy mainly with the promotion of the IIoT, in which data is
used in order to improve operations, enhance service and detect new
opportunities. The IIC collaborates with the Industry 4.0 Platform.

Just like the Industry 4.0 Platform, the Internet of Things Consor-
tium has developed a framework called the Industrial Internet Ref-
erence Architecture (IIRA). The first version was released in 2015 and
version 1.8 of the IIRA was published in January 2017. It aims to help all
sorts of experts who are involved in IIoT projects to consistently design
IIoT solution architectures and deploy interoperable IIoT systems. On
top of the IIRA model, in February 2017 the IIC also published the
Industrial Internet Connectivity Framework (IICF).

Other initiatives are also being considered. For instance, the Orga-
nization for Machine Automation and Control, the OPC Foundation,
and PLCopen, which have worked independently on different aspects
of automation standardization, are now combining efforts to create

2.3 The Industrial IoT 77

companion specifications for the standards and protocols they have
already developed in order to allow seamless IIoT interoperability.
For example, the OPC Foundation’s “Unified Architecture” (OPC UA)
is an industrial interoperability framework. It delivers information
modeling with integrated security, access rights, and all communi-
cation layers to provide plug and play machine-to-machine (M2M)
communication inside factories. It is scalable across the plant floor
and from sensor to IT enterprise and cloud scenarios. OPC and
PLCopen – which is focused around IEC 61131-3, the only global
standard for industrial control programming – worked together to
define a set of function blocks to map the IEC 61131-3 standard
for industrial controls programming to the OPC UA information
communication model.

79

3

Interoperability

3.1 Applications in the IoT

Costs, limited size and minimal energy consumption are a few of
the reasons that IoT devices have limited computational capabilities.
Because of these functional and economic requirements, smart
objects, especially those that are battery-powered, cannot afford
to have heavy processing loads and use expensive communication
protocols. On the one hand, limited processing capabilities means
that it is hard to process large messages. On the other hand, less
processing means lower energy consumption. As a result, IoT devices
typically need to minimize the amount of transmitted data.

Devices that operate in low-power and lossy networks (LLNs), can
greatly benefit from lightweight protocols. Large messages result in
more fragments (6LoWPAN), which introduce overhead: due to the
unstable nature of LLNs, transmitting more fragments can require
multiple retransmissions before a whole message can be successfully
reconstructed by the receiver. These retransmissions may result in
more delay and energy consumption.

Communication protocols are specific communication paradigms,
which can be classified into two categories: request/response and
publish/subscribe (pub/sub). Specific application scenarios have
requirements that drive the choice of the most suitable communica-
tion paradigm (and protocol). The question of which architecture fits
best does not have a clear “one-for-all” answer.

Internet of Things: Architectures, Protocols and Standards, First Edition.
Simone Cirani, Gianluigi Ferrari, Marco Picone, and Luca Veltri.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

80 3 Interoperability

3.2 The Verticals: Cloud-based Solutions

The early days of the IoT were characterized by the adoption of a
very simplistic approach to interconnecting devices: by relying on
the availability of cloud services, all makers needed to do was to
connect things to the Internet (either through cellular networks or in
many cases through an Internet-connected gateway) and send all data
uplink to the cloud. The cloud service would then provide a storage
facility for all data sent by devices on one side, and a HTTP-based
interface for access by clients (through browser or vendor-specific
mobile apps) on the other. All major cloud service providers (as
illustrated in Figure 3.1), such as Amazon and Microsoft, have now
entered this market and released their own cloud IoT platforms.
Amazon’s AWS IoT and Microsoft’s Azure IoT suite are probably the
most popular cloud IoT platforms. These cloud IoT platforms are an
easy way for makers to deploy their applications without requiring
them to invest development resources to realize a backend.

Although clearly easy to implement and very cost-effective, this
approach has created the misunderstanding that the IoT can simply
be built by connecting things to the Internet. This is a prerequisite for
the IoT but it is not enough to actually create a worldwide network
of interconnected devices. This first generation of hardware and
software involved has introduced several issues because no attention

Cloud loT

Platform

Cloud Services

Smart objects

Applications

MQTT/HTTP

over secure channel (TLS,VPN)

Figure 3.1 Cloud IoT platform architecture.

3.3 REST Architectures: The Web of Things 81

was paid to developing a long-term design that would actually control
the network nor take into account:

• Scalability: The number of IoT devices is expected to reach 50 bil-
lion by 2020. At present, with the order of hundreds of millions of
things, everything works, but are networks and services ready to
handle the traffic generated by billions of things?

• Availability: What happens if an Internet connection becomes tem-
porarily or permanently unavailable? Relying on the cloud would
just make the service unavailable.

• Interoperability: All device-to-cloud applications do not allow direct
interactions among things made by different manufacturers. Inter-
operability can occur only at the cloud level, through system inte-
gration of the data itself, if such data are made available to external
applications.

• Security: Even though secure and authorized access to cloud
services can be implemented in traditional ways, attackers could
exploit a breach in the cloud to access a huge amount of private
data or implement a DoS attack to prevent users from accessing
their data.

• Evolution of systems: Device-to-cloud applications typically need to
hard code information into things (which act as clients), thus mak-
ing them less robust to changes on the server side. Any update or
upgrade in the server functionality might have a destructive effect
on the operations of things, which may then require a software/
firmware upgrade to change how they operate (say, the endpoint
they target or the data format they use).

Cloud-based solutions are never going to disappear, at least anytime
soon. Nonetheless, this approach just cannot be the reference archi-
tecture for a scalable and evolutionary IoT.

3.3 REST Architectures: The Web of Things

One promising approach that is being brought to the IoT is the idea
that it should be built in a similar way to the Internet. There are
several reasons to use a web-based approach in the IoT. The web
has been around for decades and lots of experience has been gained.

82 3 Interoperability

Since its public release in 1991, the World Wide Web has dramatically
evolved and has become an infrastructure upon which to store
documents, resources, and to build distributed applications. The most
important aspects of the introduction of the web were the referencing
of resources through uniform resource identifiers (URIs) [28] and
the introduction of the Hypertext Transfer Protocol (HTTP) [2] as
the application-layer protocol for hypermedia systems. Along with
these two major pillars, other essential standards and technologies
have been developed, such as the Hypertext Markup Language
(HTML) for web documents, web browsers, and web servers. As the
web became more and more popular, browsers integrated dynamic
behavior through Javascript and Cascading Stylesheets (CSS). After
all these years, HTTP is by far the most common application-layer
protocol and software libraries implementing web protocols are
available (web servers, HTTP clients and so on) for any programming
language. Ways of building web applications are widely known and
used: adopting similar approaches for the IoT could therefore take
advantage of the expertise of existing developers. Moreover, the web
has proved to scale extremely well: this is extremely important for
the IoT, where billions of connected devices are expected to operate.
The IoT can greatly benefit from all the experience gained in the
development of the web and thus the use of a similar architecture
would seem to be a wise design choice.

3.3.1 REST: The Web as a Platform

The web was born to be an easy to use, distributed, and loosely cou-
pled (see below) system for sharing documents. The architecture of the
web is simple enough to make it easy to build applications and man-
age content. The web is based on a small set of principles, yet it has
proved to scale and evolve wonderfully. Thanks to these principles, the
web has evolved to become a platform for building distributed systems
using HTTP.

REpresentational State Transfer (REST) is the architectural style
behind the web. Defined in 2000 in Roy Fielding’s PhD thesis [29],
REST defines a set of rules and principles that all the elements of the
architecture must conform to in order to build web applications that
scale well, in terms of:

• scalability (number of interacting clients)
• robustness (long-term evolution of systems).

3.3 REST Architectures: The Web of Things 83

Loose coupling means that the endpoints should contain as little
information about each other as needed to work. All necessary
missing information should be collected while interacting. The client
must know very few things a-priori. The server will drive the client
and pass in the information required to progress and to perform
the intended operations. The more a client knows about the server,
the more closely it depends on the server implementation. This is a
weakness for an application because any change on the server must be
matched by a change in the client, which would otherwise just break.
In a highly dynamic, evolving, and gigantic environment such as the
IoT, design principles that lead to create robust applications must
be adopted.

3.3.1.1 Resource-oriented Architectures
REST is based on the concept of a resource. A resource can be defined
as any relevant entity in an application’s domain that is exposed on the
network. A webpage, a video, and an order on an e-commerce website
can all be considered web resources. A resource is anything with which
a user interacts while progressing toward some goal. Anything can be
mapped as a resource, as long as it is meaningful for the application.
Resources are characterized by some data, such as the title of the page
or the items in an order.

An alternative to a resource-oriented architecture (ROA) is a
service-oriented architecture (SOA). SOAs have been around for
many years and have become a reference for many legacy business-
oriented systems. A SOA refers to an architecture where two
endpoints communicate through a pre-defined set of messaging
contracts. A client starts interacting with a server by retrieving the
list of available services and how these can be mapped to HTTP
messages, in a Web Service Definition Language (WSDL) document.
In essence, the WSDL maps a message to a method call on the server.
Remote method calls are contained in a SOAP (an XML specification)
included in the body of messages. The presence of a WSDL document
is needed to add semantics to messages. However, this is a weakness:
if a server changes its services, a client needs to get access to the new
WSDL or its functionalities are invalidated. In a ROA, on the other
hand, there is no endpoint exposing services; there are only resources
that can be manipulated. This is critical for the robustness of the client
application.

84 3 Interoperability

3.3.1.2 REST Architectures
The principle of separation of concerns is a fundamental of the REST
architecture. According to this principle, each element of a system is
responsible for a specific concern. Well-separated concerns allow for
modularity, reusability, and independent evolution of the system’s ele-
ments. A REST architecture builds on:

• clients (or user agents, such as browsers), which are the application
interface and initiate the interactions

• servers (origin servers) host resources and serve client requests.

Intermediaries act as clients and servers at the same time. Forward
proxies (known to clients) are “exit points” for a request. Reverse prox-
ies appear as origin servers to a client, but actually relay requests.

A REST architecture is characterized by uniform interfaces: all con-
nectors within the system must conform to this interface’s constraints.
Collectively, REST defines the following principles:

• identification of resources
• manipulation of resources through representations
• self-descriptive messages
• hypermedia as the engine of application states.

An application that follows the above principles is termed RESTful.

3.3.1.3 Representation of Resources
Resources are never exchanged directly by endpoints. Instead,
representations of resources are exchanged between endpoints. A
representation is a view of the state of the resource at a given time.
This view can be encoded in one or more transferable formats, such
as XHTML, Atom, XML, JSON, plain text, comma-separated values,
MP3, or JPEG. Typically, the type of representation is specified in
one header of the message containing the resource; for example,
HTTP defines the Content-Type header. For the sake of compactness,
from now on we will refer to the representation of a resource simply
as a resource. Resources are exchanged back and forth between
clients and servers. In order to be exchanged, resources must be
serialized/deserialized properly at each endpoint, as shown in
Figure 3.2.

The same resource can have many different representations (1:N
relationship): the state of the same sensor can be described using
JSON, XML, or any other suitable format.

3.3 REST Architectures: The Web of Things 85

Figure 3.2 Representations of resources are exchanged between endpoints.

3.3.1.4 Resource Identifiers
In order to ensure that an application is handling the correct resource,
a mechanism to identify a resource univocally in the network is nec-
essary. uniform resource identifiers (URIs), defined in RFC 3986 [28],
serve this specific need.

A URI identifies a resource univocally. A URI can be used to address
a resource, so that it can be located, retrieved, and manipulated. There
is a 1:N relationship between a resource and URIs: a resource can be
mapped to multiple URIs, but a URI points exactly to one resource.
URIs can be of two kinds:

• a uniform resource name (URN) specifies the name of a resource
(e.g., urn:ietf:rfc:2616);

• a uniform resource locator (URL) specifies how to locate the
resource, (e.g., http://example.com/books/123).

All URIs take the following form: scheme:scheme-specific-
part. The scheme part defines how the rest of the URI is to be
interpreted – it typically serves as an indication of the communication
protocol that should be used to target the resource. For instance,
URNs use the urn scheme, while web resources use the http scheme.
URLs include all the information needed to successfully address the
resource. A URL has the form shown in Figure 3.3.

The optional [username:password] part specifies credentials to use
for authenticated access to the resource. The host and optional port
include networking information needed to reach to the resource. The

http:// example.com :8080 /people ?id=1

scheme host port path query

#address

fragment

Figure 3.3 Generic URL structure.

86 3 Interoperability

host can be be either an IP address or a fully qualified domain name,
which must be resolved using the DNS system. The path provides
information to locate the resource inside the host. The query contains
matching information to filter out the result. Finally, the fragment
can be used to identify a specific portion of the resource. URIs should
be opaque and not expose any specific notion of the format used to
represent the targeted resource. For example, http://example
.com/people/123 is a good URI, whilehttp://example.com/
people/123.xml and http://example.com/people/123
.json are not.

3.3.1.5 Statelessness
An important principle of REST is statelessness. Statelessness implies
that no state information must be kept on the client and server sides,
thus avoiding the need to use cookies or to introduce the concept of
sessions, which demand a stricter coupling between the endpoints.
All requests must therefore be stateless. In order to preserve state-
lessness, each message must be self-descriptive. This means that all
requests must contain all the information to understand the request
so that servers can process them without context (about the state of
the client). There is no state information maintained between clients
and servers: the state of the client is contained in the request, so the
server is relieved from the burden of keeping track of the client state.

3.3.1.6 Applications as Finite-state Machines
RESTful applications make forward progress by transitioning from one
state to another, just like a finite-state machine (FSM), as shown in
Figure 3.4.

Due to the loose coupling between clients and servers, the states of
the FSM and the transitions between them are not known in advance.
A state is reached when the server transfers a representation of the
resource as a consequence of a client request. The next possible transi-
tions are discovered when the application reaches a new state (gradual
reveal). Resource representations that embed links are called hyper-
media. These links represent the possible transitions to the next states.
In essence, the state of the a resource identified by a URI is contained
in the data section of the resource representation and the transition to
the next states are contained in the links.

3.3.1.7 Hypermedia as the Engine of Application State
The final principle of REST is “hypermedia as the engine of applica-
tion state”, or HATEOAS for short. HATEOAS states that resource

3.3 REST Architectures: The Web of Things 87

Figure 3.4 Applications as
finite-state machines. Entry point

S0
S1

S2

S4

S5

S3

representation should include all the information to drive the client
to perform the next requests to progress in the application. By doing
so, a client just needs to follow the instructions that the server trans-
mits in order to reach its goal. This guarantees that, should the server
change its implementation and introduce new functionality (states and
links in the FSM), the client would be unaffected by these changes and
could continue to operate.

In summary, RESTful applications progress according to the follow-
ing steps:

1) The client starts from an entry URI or a bookmark.
2) The response to a GET request includes a hypermedia representa-

tion.
3) The representation contains links that define the possible transi-

tions to the next states of the FSM.
4) The client selects a link to follow and issues the next request; that

is, it triggers a transition to the next state.
5) The client can also go back.

An important contribution of REST is the fact that it allows the web
to be modeled as an FSM. The web is a globally distributed application,
with web browsers as the clients and millions of servers that can serve
requests. In the web, resources are documents (such as HTML pages).
HTML includes links that can point to other documents (inside <a>
tags) and is therefore a hypermedia format. The application is entered
through a first URI (entered in the address bar). By clicking on a link,
a new state is reached (the new document).

88 3 Interoperability

3.3.2 Richardson Maturity Model

The Richardson maturity model (Figure 3.5) is a classification system
for web-based applications. The classification is based on levels, which
determine the degree of compliance with the principles of REST. It can
be used to answer the question “How RESTful is a web application?”
According to the Richardson maturity model, the higher the level, the
more RESTful an application is: the higher the level, the less coupling
exists between clients and servers. We always have to remind ourselves
that coupling between endpoints should be avoided as much as possi-
ble in order to support independent evolution of systems.

3.3.2.1 Level 0: the Swamp of POX
The first attempt to create remote procedure calls (RPCs) on the
web implied the use of HTTP as a transport system for remote
interactions, but without using any of the mechanisms of the web.
HTTP was merely used as a tunneling mechanism for custom remote
interaction. Using HTTP has great benefits, such as the use of TCP
ports 80 and 443, which are typically considered safe by firewalls and
therefore are not blocked. The idea behind using HTTP as a transport
is to expose a service at some URI and then use a single HTTP
method – namely POST – to send requests, embedding in the request
payload an XML-formatted document describing the operation. In
essence, clients post RPCs that trigger actions. The XML documents

Hypermedia

controls

HTTP verbs

Resources

The Swamp of

POX

R
E

S
T

 o
ri
e
n
te

d
 f
e
a
tu

re
s

Figure 3.5 The Richardson maturity model.

3.3 REST Architectures: The Web of Things 89

Client Web Service
POST /calendar HTTP/1.1

<eventRequest date="2015-03-24" user="123"/>

http://example.com/calendar

Client Web Service

HTTP/1.1 200 OK

<eventList>
<event start="1230" end="1430" type="teaching">

<course name="Internet of Things"/>
</event>
<event start="1630" end="1730" type="call">

<person name="Gianluigi Ferrari"/>
</event>

</eventList>

Client Web Service

POST /calendar HTTP/1.1

<newEventRequest date="2015-03-24" user="123"/>
<event start="1730" end="1800" type="meeting"/>

</newEventRequest>

Client Web Service
HTTP/1.1 200 OK

<event start="1730" end="1800" type="meeting"/>

Figure 3.6 XML-based RPC.

embedded in the request and response messages describe the action
and the result of that action, respectively.

All the semantics of an interaction are strictly tied to the syntax that
clients and servers use. This is why Level 0 applications are in “the
Swamp of POX” (plain old XML). This is depicted in Figure 3.6.

The agreement on both sides makes applications extremely vulnera-
ble to changes; the client must have a very deep a-priori knowledge of:

• the web service
• the actions that can be triggered
• the meaning of XML document tags and attributes.

If the web service changes something, the client just breaks. Few web
features are used to enforce interactions between endpoints; this is just
an HTTP-based RPC model. The format used by XML documents is
typically SOAP [30]. However, using SOAP and XML-RPC instead of
plain XML does not make any difference; it is just a detail of serializa-
tion and deserialization at endpoints.

90 3 Interoperability

3.3.2.2 Level 1: Resources
In order to increase the robustness of client applications against
changes in the server implementation, a more convenient approach
is to model interactions by targeting resources instead of services.
Rather than making all our requests to a single service endpoint,
individual resources are addressed (one service exposes many logical
resources).

Applications that use the concept of resources rather than services
are classified as Level 1. This is an improvement over Level 0 because
more web-oriented concepts are introduced and exploited, but
HTTP is still used as a tunneling mechanism. When working with
Level 1 applications, action names and parameters are typically
mapped directly to a URI, rather than embedded in the semantics of
XML/SOAP payloads (Figure 3.7). The action is triggered by sending
an HTTP GET or POST request to the targeted URI, for example
GET http://example.com/people/123?action=delete.
One important benefit of using URIs is that resources are globally
addressable. However, this is still a form RPC: the difference is that
semantics are inserted in the URI, which still introduces a coupling
between client and server. Moreover, the use of the GET method
for operations that might create side-effects on the server (such as
creating or deleting resources) does not comply with the principles
defined in the HTTP specification [2], which states that GET requests
should be idempotent (meaning that multiple requests have the same
effect as a single request), and is therefore bad practice.

3.3.2.3 Level 2: HTTP Verbs
As we have just seen, Level 1 applications, which embed the semantics
of the action to execute directly in the URI and use a single HTTP
method for requests, violate the HTTP specification. A much better

public Event createEvent(long user, Date from, Date to, String type){

//...

Service Method Arguments

}

http://example.com/calendar/newEvent? user=123&date=2015-03-24&type=meeting&start=1730&end=1800

Figure 3.7 URI-to-action mapping.

3.3 REST Architectures: The Web of Things 91

Table 3.1 Semantics and effects of HTTP methods for manipulating resources.

HTTP method Safe Idempotent Action

GET yes yes Retrieve a resource with the given URI
POST no no Create a resource

(a new URI is returned by the server)
PUT no yes Update the targeted resource
DELETE no yes Remove the targeted resource

approach is to move the semantics from the URI to HTTP verbs when
manipulating resources. In this case we refer to Level 2 applications.
Resources are still addressable using URIs, and each resource can be
manipulated using HTTP methods. Each method has a particular
meaning and maps to a specific CRUD (create-read-update-delete)
operation, as shown in Table 3.1. According to RFC 2616, HTTP
methods can be safe and/or idempotent. Safe means that they have no
effect on the resource (the resource remains the same). Idempotent
means that the same request can be executed multiple times with the
same effect as executing it once.

HTTP method semantics Level 2 applications define the following pro-
cedures for CRUD operations.

• Creating a resource: When creating a resource (Figure 3.8), the client
must issue a POST request to the target URI of the creator of the
resource or the URI of the resource to be created itself (in case this
is allowed by the server). The request body might contain the initial
representation (state) of the resource. The response body contains

Client Web Service
POST /calendar/events HTTP/1.1

<event start="1730" end="1800" type="meeting"/>

http://example.com/calendar

Client Web Service

HTTP/1.1 201 Created
Location: /calendar/events/12345

<event start="1730" end="1800" type="meeting"/>

Figure 3.8 Resource creation.

92 3 Interoperability

the state of the newly created resource. If the URI of the newly cre-
ated resource is defined by the server, it is returned in the Location
header.

• Retrieving a resource: When retrieving a resource (Figure 3.9), the
client must issue a GET request to the target URI of the selected
resource. The request body is left empty. The response body con-
tains the current state of the resource.

• Updating a resource: When changing a resource (Figure 3.10), the
client must issue a PUT request to the target URI of the resource
to manipulate. The URI is the one returned in the Location header
after an initial POST. The request body might contain the new state.
The response body contains the updated state.

• Deleting a resource: When deleting a resource (Figure 3.11), the
client must issue a DELETE request to the target URI of the
resource to delete. The request body is left empty. The response
body might be empty or contain the state of the deleted resource.

Client Web ServiceGET /calendar/events/13245 HTTP/1.1

http://example.com/calendar

Client Web Service
HTTP/1.1 200 OK

<event start="1730" end="1800" type="meeting"/>

Figure 3.9 Resource retrieval.

Client Web Service
PUT /calendar/events/12345 HTTP/1.1

<event start="1830" end="1900" type="meeting"/>

http://example.com/calendar

Schedule a new event
Client Web Service

HTTP/1.1 200 OK
Location: /calendar/events/12345

<event start="1830" end="1900" type="meeting"/>

Figure 3.10 Resource update.

3.3 REST Architectures: The Web of Things 93

Client Web ServiceDELETE /calendar/events/13245 HTTP/1.1

http://example.com/calendar

Client Web ServiceHTTP/1.1 200 OK

Figure 3.11 Resource deletion.

HTTP Response Code Semantics
Status (response) codes also have semantics: they have particular
meaning. Each method has a specific set of status codes. For instance,
2xx indicates success, 4xx indicates a client error (e.g., 405 Method
not allowed), and 5xx indicates a server error (e.g., 500 Internal server
error). A client error instructs the client not to repeat the request.
It can be due to a bad syntax, missing credentials or authorization,
or a failure to find the resource for the given URI. A server error
means that the client might choose to repeat the request since the
failure was on the server side. The semantics of the most common
success and failure response codes are reported in Tables 3.2 and 3.3,
respectively.

Table 3.2 Semantics of 2xx HTTP status codes
when manipulating resources.

Method Status code Reason

GET 200 OK
POST 201 Created
PUT 200 OK

204 No content
DELETE 200 OK

202 Accepted
204 No content

94 3 Interoperability

Table 3.3 Semantics HTTP error status codes when manipulating resources.

Status code Reason Code

400 Bad request The client isseud a malformed request
401 Unauthorized The client must authenticate before

performing the request
403 Forbidden The client does not have the privileges to

access the resource
404 Not found No resource with the given URI was found
405 Method not allowed The resource cannot be manipulated using

the HTTP method
500 Internal server error The server failed to process the request

Describing Level 2 Applications
With Level 2 applications, HTTP is no longer used just as a transport
for requests, but instead is also used to describe what manipu-
lation on the resource is being requested. By doing so, requests
and response are fully descriptive and do not rely on any specific
a-priori knowledge between endpoints regarding the contents of the
message or how to construct a URI. Requests can therefore be read
as “(READ, CREATE, UPDATE, DELETE) the resource identified
by the URI.”

Level 2 applications use:

• HTTP verbs and status codes to coordinate interactions and manip-
ulate resources;

• HTTP headers to convey information (e.g., the Location header to
indicate the URI of a created resource).

However, there is still some coupling between client and server appli-
cations: the client must know the URI of a resource and which methods
can be invoked. Some sort of documentation is needed to let clients
learn about the allowable manipulations for a resource; that is, what
can be done with a resource.

The solution to this problem is to use a Web Application Description
Language1 (WADL) document [31]. A WADL document is a static
description used to advertise the endpoints, the methods, and the

1 http://www.w3.org/Submission/wadl/.

3.3 REST Architectures: The Web of Things 95

representation formats of the resources hosted by a web application.
WADL documents describe:

• sets of resources;
• relationships between resources;
• methods that can be applied to each resource, together with

expected input/output and formats;
• resource representation formats (MIME types and data schemas).

WADL documents are needed to answer the following questions:

• “What actions can I take with a URI that is being linked in my rep-
resentation?”

• “What is the result of such actions and how should the returned
state be interpreted?”

3.3.2.4 Level 3: Hypermedia
In order to be fully compliant with the REST principles, Level 3 appli-
cations must support the HATEOAS principle (see Section 3.3.1.7). As
we have seen, this stands for “hypermedia as the engine of application
state,” and is the ultimate guarantee that client and server applications
are fully decoupled.

According to HATEOAS, representations of resource should be
hypermedia; that is, representations contain URI links to other
resources. Hypermedia embed links to drive application states. Web
linking [12] specifies relation types for web links, and defines a registry
for these relations. Because of this, client applications do not need
any a-priori knowledge of the server application since the transitions
to next possible states are embedded in the state itself. When clients
reach a state of the application, the representation of the resource has
a double goal:

• it describes the current state;
• it includes link information to drive the client perform the next

intended transitions, according to what the server expects.

The state of a resource is the aggregation of:

• data: values of information items belonging to that resource;
• links: representing transitions to possible future states of the current

resource.

This idea of letting the server drive the client through all the states
of the application allows client applications to be extremely robust

96 3 Interoperability

against changes of the server since all a client needs to do is to fol-
low the links included in the representation of the current resource.
All the client needs to know in advance is an initial URI (entry point
of the application) in order to let the application reach the first state.
Put in another way, the more a client ignores details about the server,
the more robust and open to system evolution it is.

A direct consequence of the HATEOAS principle is the fact that
hypermedia plays a fundamental role in the discovery and descrip-
tion of next states for the client. It is important to use or define
(hyper)media types that are meaningful for the application. A typical
rule for HATEOAS is “a REST API should spend almost all of its
descriptive effort in defining the media type(s) used for representing
resources and driving application state, or in defining extended rela-
tion names and/or hypertext-enabled mark-up for existing standard
media types.” Since hypermedia controls describe the resources and
drive the application, they are the core of the application. A client
capable of understanding the meaning of the hypermedia is fully
autonomous in the execution of all the operations, regardless of any
change on the server. A server can change the URI scheme indepen-
dently without breaking clients and can introduce new functionalities
(states) just by adding more links in the hypermedia. HATEOAS fully
enables true independent evolution of systems.

Hypermedia formats
Even in Level 3 applications, clients still need to discover and interact
with resources. When the client is presented links to other states,
it must be able to interpret these links in order to decide which
one to follow. A human-controlled application can rely on user
interfaces and events input by users to advance, but this does not
apply to machine-to-machine (M2M) communications. As argued
before, hypermedia formats provide the means for interacting with a
service and are therefore an integral part of the application’s service
contract. An extremely important detail of an application is the
choice of hypermedia format at design time. This choice must ensure
that the chosen format is able to convey all necessary information
for client applications to progress. This is where semantics start to
become important. Hypermedia formats can either be standard or
domain-specific. Several of the hypermedia formats already in use
on the Web – Atom (application/atom), RSS (application/rss), and
XHTML (application/xhtml) – are widely used. XHTML supports

3.4 The Web of Things 97

hypermedia using hypermedia controls such as the <a> tag. Using
standard formats has some benefits, such as widespread knowledge
among system/software architects, developers, and IT engineers of
the semantics of tags or fields and the availablity of software libraries
and applications supporting such media types. However, not all
standard hypermedia can meet the requirements of an application.
Custom formats can be designed to map specific problem domains.
Even though a discussion on semantics is beyond the scope of this
book, hypermedia format is a very important design criterion, which
should be carefully considered.

An IoT standard for hypermedia to be used in constrained environ-
ments is the CoRE Link Format [13]. The CoRE Link Format is an
IoT-oriented web linking specification used to define attributes and
relations that are meaningful for IoT applications. The CoRE Link For-
mat will be considered in detail in Section 3.9.1.

3.3.2.5 The Meaning of the Levels
Level 1 handles complexity: a single large service endpoint is divided
into multiple resources. Level 2 provides a standard set of verbs so as
to handle operations uniformly (CRUD operations). Level 3 introduces
discoverability, in order to make a protocol self-documenting.

3.4 The Web of Things

Modeling the IoT using web-oriented, RESTful principles can be a way
to start to develop a global infrastructure of interconnected objects
and to foster the development of scalable and robust IoT applications.
The basic idea is to consider smart objects as tiny servers that imple-
ment Level 3 IoT applications using hypermedia and the CoRE Link
Format. Building the IoT around the REST paradigm and modeling it
according to web concepts allows reuse of all the experience gained in
the decades of building the web. The Web of Things (WoT) provides
an application layer that simplifies the creation of the IoT. By bringing
the patterns of the web to the IoT, it will be possible to create robust
applications in the long term and to build an infrastruture designed to
scale indefinitely over time. WoT applications will bring to the IoT the
same usability as the World Wide Web did with the Internet. The WoT
will use a mix of HTTP and CoAP protocols, according to the specific
application requirements and deployment scenarios. However, given

98 3 Interoperability

the RESTful nature of these web-oriented protocols, the same patterns
will be adopted, resulting in full interoperability between the web and
the WoT. As discussed in Section 2.2.5.1, CoAP has been designed
to map to HTTP; dedicated network elements (HTTP–CoAP prox-
ies) able to perform protocol translation can be introduced in order to
update client and server applications that natively communicate with
different protocols.

3.5 Messaging Queues and Publish/Subscribe
Communications

Of course, REST is not the only communication paradigm that can be
used. REST has a number of advantages, as thoroughly discussed in
Section 3.3, but it also requires objects to be tiny servers that must be
accessible by clients. In many cases, due to limited processing capabil-
ities and connectivity issues (such as firewall policies), this is not fea-
sible. An alternative to the traditional synchronous request/response
communication model (also known as the RPC pattern) is provided by
messaging systems.

Messaging systems, or message-oriented middleware, implement an
asynchronous communication model and loosely couple the senders
with the consumers of messages, thus allowing for more flexibility and
scalability. Compared to REST, senders do not send messages directly
to specific receivers, about whom they do not have any knowledge at
all. Messaging systems typically provide higher throughput than RPC
systems; the former are bounded by network bandwidth while the
latter are bounded by network latency. Moreover, the asynchronous
nature of messaging systems prevents blocking of I/O operations,
which may downgrade performance.

Messaging systems implement one of two asynchronous messaging
approaches: message queues or pub/sub.

Message queues
In the message queue pattern, the sender sends a message to a queue
on a server, where it is stored/persistent: the message is not erased
immediately but is kept in memory until a consumer receives it. Only
once delivered is the message deleted from the queue. This pattern
implements asynchronous point-to-point communication, with total
independence between the sender and the consumer.

3.5 Messaging Queues and Publish/Subscribe Communications 99

P1

S1

P2

S2

S3

B
ro

k
e

r

topicA

topicB

topicA

topicA, topicB

topicB

Figure 3.12 Publish/subscribe communication model.

Publish/Subscribe
In the pub/sub pattern, two kinds of entities exist: publishers and
subscribers. Publishers send messages to a “topic” on the server.
Subscribers can subscribe to a topic to receive a copy of all mes-
sages that have been published on that topic. This means that a
message can be consumed by multiple consumers. This is similar
to an application-layer multicast. Pub/sub implements the observer
pattern, in an event-based paradigm.

The separation between publishers and subscribers is possible
thanks to intermediary nodes, called brokers. Brokers can be imple-
mented as message queues. Typically, the broker is involved for the
following functions:

• publishing: publishers send messages to the broker;
• subscriptions: subscribers register to receive messages, possibly fil-

tered according to some policy (content or topic).

Upon receiving a message from a publisher, the broker is responsible
for dispatching messages to the subscribers, according to their sub-
scriptions, as shown in Figure 3.12.

3.5.1 Advantages of the Pub/Sub Model

The pub/sub communication model has the following advantages:

• Loose coupling: Publishers need not know which subscribers receive
messages or even if they exist. Contrast this with the client/server
paradigm, where a client must know the URI of the server and the
server must exist.

• Scalablility: Since brokers only need to route messages, they can
be replicated easily to support higher volumes of data being trans-
ferred.

100 3 Interoperability

• Lightweight implementation: Publishers and subscribers have min-
imal footprints for sending and receiving messages, as most of the
load is carried by the broker.

3.5.2 Disadvantages of the Pub/Sub Model

The loose coupling between publishers and subscribers has some
drawbacks. As there is no direct interaction between the endpoints,
the messaging contract between publishers and subscribers is inflex-
ible. No content-type negotiation can be performed. Of course, this
introduces a weakness in the architecture, as any change on the mes-
sage format being published has direct consequences on the receivers.
Long-term evolution of systems is therefore hard to achieve. Complex
and open systems, characterized by extremely heterogeneous event
semantics, can be very difficult to manage. Other drawbacks of the
pub/sub model are:

• There is no support for end-to-end security between publishers
and subscribers, due to the presence of the broker; messages can
be encrypted but this requires encryption/decryption keys to be
distributed among publishers and subscribers.

• There are throughput issues: the broker infrastructure must scale in
order to avoid issues related to load peaks on both the incoming and
outgoing interfaces, which can occur when the number of publish-
ers and their publish rate and the number of subscribers increase.
This can introduce slowdowns in message delivery.

3.5.3 Message Queue Telemetry Transport

Message Queue Telemetry Transport (MQTT2) is a lightweight,
open-source, TCP-based pub/sub protocol. MQTT is a standard of
the Organization for the Advancement of Structured Information
Standards. The current version of MQTT is 3.1.1.

MQTT targets environments in which devices and networks are
constrained. It can be used in scenarios where two-way communi-
cations between endpoints operating in unreliable networks must
occur. The lightweight nature of MQTT makes it particularly suited
to constrained environments where message protocol overhead and
message size should be minimal.

2 https://mqtt.org

3.5 Messaging Queues and Publish/Subscribe Communications 101

According to the pub/sub model, in MQTT, messages are published
to a shared topic space inside the broker. Topics are used as filters on
the message stream from all publishers to the broker. MQTT supports
hierarchical topics in the form of a topic/sub-topic/sub-sub-topic
path. Messages are delivered to all clients that have subscribed with
a matching topic filter. This means that a single client can receive
messages coming from multiple publishers. The matching condition
is applied to the topic’s hierarchy, so it possible to subscribe to just a
portion of the topic. Wildcards can be used on segments of the path
in order to provide finer granularity over the messages to receive.

In MQTT, the broker applies the subscription filters to the message
stream it receives in order to efficiently determine to which clients
a message should be dispatched. Therefore, a subscription can be
considered as a conditional realtime receive operation and has a
non-durable nature.

A sensor-network oriented version of MQTT, called MQTT-SN,
has been defined for use in low-power and lossy networks, such
as IEEE 802.15.4 networks. MQTT-SN has been designed to allow
implementation on low-cost, battery-operated devices.

3.5.3.1 MQTT versus AMQP
MQTT and AMQP have a lot in common and also have many differ-
ences. We will briefly summarize their similarities and differences at a
high-level.

Similarities between MQTT and AMQP
Both MQTT and AMQP share the following features:

• asynchronous, message queuing protocols
• based on TCP
• implementing an application-layer multicast
• use TLS for security at the transport layer
• widely available implementation for major platforms and program-

ming languages.

Differences between MQTT and AMQP
MQTT and AMQP differ in the following ways:

• MQTT is more wire-efficient and requires less effort to implement
than AMQP; it is well suited to embedded devices. AMQP is a more
verbose protocol but provides greater flexibility.

102 3 Interoperability

• MQTT provides hierarchical topics with no persistence
(stream-oriented approach); AMQP does not provide a hier-
archical topic structure but offers persistent queues as a message
storage facility (buffer-oriented approach).

• In MQTT, messages are published to a single global namespace. In
AMQP, messages can be sent to several queues.

• In MQTT, the broker has AMQP supports transactions, while
MQTT does not.

3.6 Session Initiation for the IoT

While the Constrained Application Protocol (CoAP; see Section
2.2.5.1) is intended to bring the REST paradigm to smart objects,
there are many application scenarios that might benefit from the use
of sessions. An example would be the exchange of data between an
association of participants. Here, we introduce a lightweight session
initiation protocol targeted at constrained environments. It re-uses
the syntax and semantics of CoAP in order to create, modify, and
terminate sessions among smart objects with minimal overhead.

3.6.1 Motivations

Beside the REST and pub/sub communication models, there are also
many other applications in both constrained and non-constrained
environments that might benefit from a non-request/response
communication model. Some of these applications require the
creation and management of a “session”. The term “session” refers
to any exchange of data between an association of participants. The
communication will occur according to the network, transport, and
application parameters negotiated during the session setup. Where
there are two participants, the session may involve the sending of one
or (probably) more data packets from one participant to the other, in
one or both directions. Unidirectional sessions may be initiated by
either the sender or the receiver. Examples of sessions in IoT scenarios
may be the data flow generated by a sensor and sent to a particular
recipient for further processing, or data streams exchanged by two
interacting smart toys.

3.6 Session Initiation for the IoT 103

The Session Initiation Protocol (SIP) [5] is the standard application
protocol for establishing application-layer sessions. It allows the
endpoints to create, modify, and terminate any kind of (multi)media
session: VoIP calls, multimedia conferences, or data communica-
tions for example. Session media are transmitted end-to-end, in a
peer-to-peer fashion, either using specific application/transport layer
protocols, such as RTP [16], or as raw data on top of the TCP or
UDP transport protocols. SIP is a text-based protocol, similar to
HTTP, and can run on top of several transport protocols, such as
UDP (default), TCP, or SCTP, or on top of secure transport protocol
such as TLS and DTLS. Session parameters are exchanged as SIP
message payloads; a standard protocol used for this purpose is the
Session Description Protocol [17]. The SIP protocol also supports
intermediate network elements, which are used to allow endpoint
registration and session establishment. Examples include SIP proxy
servers and registrar servers. SIP also defines the concepts of trans-
action, dialog, and call as groups of related messages, at different
abstraction layers.

Although SIP was defined for Internet applications, it has the
potential to be reused in the IoT. However, this would require suitable
adaptation in order to meet the requirements of constrained environ-
ments: the large message size and the processing load for the parsing
of standard text-based SIP messages is not suitable for constrained
environments.

For these reasons, in this section, we propose an alternative
mechanism for session initiation, based on CoAP, aiming at allow-
ing constrained devices to instantiate communication sessions in
a lightweight and standardized fashion. Session instantiation can
include a negotiation phase, in which the parameters used for all
subsequent communication are determined. We propose to reuse
not only the CoAP message format, but also the REST paradigm
(and methods) provided by CoAP for initiating sessions, rather than
compressing SIP into a binary protocol and redefining new methods.
This approach brings several benefits, such as the possibility of
taking advantage of the well-known REST paradigm and existing
implementations of CoAP and avoiding the need to include other
software libraries in smart objects, which are typically very limited in
available memory.

104 3 Interoperability

3.6.2 Lightweight Sessions in the IoT

The reuse of CoAP’s message syntax, rather than defining a brand new
ad-hoc session initiation protocol for constrained environments, has
several motivations:

• Since CoAP maps HTTP methods well, and since SIP is very simi-
lar to HTTP, the message format of CoAP is well-suited to carrying
information required by a protocol like SIP.

• Since CoAP already has many implementations in constrained oper-
ating systems, such as Erbium [32] for Contiki OS, its use would not
require new implementation and testing efforts.

• The possibility of using the same software libraries as CoAP allows
the memory footprint to be kept very small – a critical issue for
smart objects with very limited available memory.

There are two possible approaches for establishing, managing, and
tearing down a session when using the message format defined by
CoAP:

• defining new ad-hoc methods for session initiation together with
their own semantics, encoded according to CoAP syntax;

• reusing the semantics of CoAP methods and trying to manage ses-
sions in a RESTful fashion.

Our opinion is that the latter approach is preferable since it would
maximize the reuse of CoAP: both the message format and the seman-
tics. This approach would also being the benefit of avoiding changes
to the standard or introducing a new one, as would be needed if new
methods were to be defined.

Treating the problem of session initiation in a RESTful fashion poses
some issues, mainly related to the concept of a session:

• Is a session compatible with the RESTful paradigm?
• In RESTful terms, how should a session be defined?
• What are the roles involved in the management of a session?
• Can a resource be negotiated among two or more parties?

The answers to these questions drive the design of a suitable
lightweight session initiation protocol. A first consideration is that
a unidirectional session can be considered as a flow of data from a
data source and to a destination. A bidirectional session (i.e., a session
where each of the endpoints of communication generate indepen-
dent – but related – flows of data) can therefore be considered as the

3.6 Session Initiation for the IoT 105

union of two unidirectional sessions. This idea can be extended to a
session among multiple parties, which can be seen as the union of
several unidirectional sessions.

A second consideration is related to the role of the endpoints
involved in the sessions. In SIP, an endpoint, termed a user agent
(UA), can act in one of two roles when participating in a session:

• a user agent client (UAC), which sends SIP requests (typically to
initiate a session, through INVITE requests);

• a user agent server (UAS), which receives requests and returns
responses.

SIP UAs typically act as both UAC and UAS because, in general, it can-
not be determined in advance whether a UA will initiate a multimedia
session (caller) or respond to a request for initiating a session (callee).
However, in constrained IoT scenarios, it can be assumed that, because
of their nature, smart objects will either as a UAC or, more often, as a
UAS. Note that the role in establishing the session (UAC or UAS) is
not strictly related to the role during the session (sending or receiving
data). It is important to note that a session does not necessarily imply
a multimedia flow, but it is related to a long-lasting flow of data that
adheres to some parameters that can be negotiated among the end-
points during the initiation phase. This feature is obviously compatible
with duty-cycled devices.

In RESTful terms, a session can be considered a “resource” con-
taining all the parameters related to the flow of data. The session
identifier is the URI of the resource. Figure 3.13 shows an example of
an XML-based representation of a session resource, based on SDP.
Other hypermedia formats can be also used as the resource represen-
tation, for instance based on JSON. The proposed protocol makes no
assumption about the actual hypermedia format used to represent
resources.

Figure 3.13 Example of
an XML-based
representation of a session
resource carrying SDP
session information.

<?xmL version=“1.0” encoding=“UTF-8”?>
<cosip:session

xmlns: cosip=“http://schema.org/ietf/cosip”
xmlns: sdp=“http://schema.org/ietf/sdp”>

<cosip:params>
<sdp:c>In IP6 aaaa::2</sdp:c>
<sdp:m>audio 4000 RTP/AVP 0</sdp:m>
<sdp:a>rtpmap:0 PCMU/8000</sdp:a>

</cosip:params>
</cosip:session>

106 3 Interoperability

3.6.2.1 A Protocol for Constrained Session Initiation
In this section, we present the proposed procedures for establish-
ing, maintaining, and terminating sessions, according to the REST
paradigm and to the discussion about sessions and resources in
Section 3.6.2.

3.6.2.2 Session Initiation
According to the well-known session setup model used by several
session initiation and call-setup signaling protocols (e.g., SIP, H.323,
ISUP), the UAC (the caller) starts by sending the first request mes-
sage to establish a session. Then, the UAS (the callee) can respond,
either accepting or refusing the request. A positive response is then
confirmed by the UAC in order to inform the UAS that the response
has been received and the session can start. During this three-way
handshake the UAC and UAS may negotiate the session by specifying
session-related attributes, such as data type, flow direction (from UAC
to UAS, from UAS to UAC, or bidirectional), flow endpoints, appli-
cation and transport protocols, formats, and encoding parameters.
Session negotiation is typically implemented through an offer/answer
model, where one party sends an “offer” and the other party sends
an “answer”. Although some protocols (e.g., SIP) support both UAC-
or UAS-initiated negotiation (i.e., both UAC and UAS may send the
offer, and the other party sends the answer in the next message),
session negotiation is usually initiated by the UAC.

According to the REST paradigm, a session is a resource maintained
by the server. In this case, the client (UAC) requests from the server
(UAS) the creation of such a resource; the server may either accept
the request and create the resource (thus acting as an origin server)
or refuse it. The session setup procedure is shown in Figure 3.14. The
UAC sends a CoAP CON POST request targeted to the UAS, includ-
ing a payload containing the offer. This is encoded in a suitable format,
such as SDP, XML, or JSON. The POST request also contains a CoAP
Observe option set to 0 (i.e., register) in order to specify at the same
time that the UAC is also interested in observing the created resource.
This behavior is needed in order to support server-side session modi-
fications and termination, as described in Sections 3.6.2.3 and 3.6.2.4.
Then, the UAS may:

• accept the session, by replying with a CoAP CON 2.01 “Created”
response, including the new session identifier (resource URI)

3.6 Session Initiation for the IoT 107

Figure 3.14 Session initiation
procedure.

CON POST uas_uri

Observe: 0

UAC UAS

ACK

ACK

CON 2.01 Created

Location: session_id

Observe: seq_n

Session

within a Location-Path CoAP option field and the answer within
the payload, reporting the result of the session negotiation (i.e., the
representation of the created resource);

• refuse the session.

In both the request and the response, the format of the ses-
sion description (the offer and the answer) is specified by the
Content-Format CoAP option field.

In order to accomplish reliable transmission in the session setup
phase, the CoAP CON POST request and the CoAP CON 2.01
responses should be acknowledged. CoAP defines also mechanisms to
encapsulate the response in an ACK message (piggy-backing), in order
to reduce the number of transmitted messages. In Figure 3.14, the
UAS confirms the CON POST with an ACK, then sends the CON 2.01
response, confirmed by the UAC with an ACK message. In this case,
the setup procedure involves four messages. although retransmissions
might occur in the event of message losses or timeouts. When the
setup procedure has completed, both parties may start sending the
data according to the negotiated session.

108 3 Interoperability

3.6.2.3 Session Tear-down
At the end of a session, the UAC or the UAS might wish to explicitly
communicate to the other party the intention of ending the data
communication. Even though this is not strictly required, it is prefer-
able to perform this “graceful termination” procedure in order to
inform the other party to stop listening for incoming data and to free
the allocated processing and/or memory resources. Although this
could be done directly within the data plane, using specific features
of the data communication protocol (when available), it is usually
implemented at the control plane using the same signaling protocol
adopted for session setup.

For the proposed CoAP-based session initiation protocol, the
tear-down procedure can be initiated either by the UAC or the UAS.
If the UAC wants to tear down the current session, it starts the
session-termination procedure by sending a CoAP CON DELETE
request targeted to the session resource URI (previously obtained
by the server during the setup within the 2.01 response). The UAS
will process the received DELETE request: if a corresponding active
session is found, the session is terminated and a CoAP CON 2.02
“Deleted” response is sent. According to the CoAP Observe option
extension, if the UAS is willing to tear down the session, it can simply
send a CoAP CON 4.04 “Not found” response matching the same
Token option included in the original POST request that created the
resource (session). Then the UAC confirms the reception of the 4.04
response through an ACK message.

Figure 3.15 shows the session tear-down procedure, with both UAC-
and UAS-terminated sessions depicted.

3.6.2.4 Session Modification
We consider also the case in which the UAC or the UAS may want
to change the current active session. The session change may involve
the modification of session directions, data types, protocols, or other
session parameters.

If the UAC wants to change the session, it sends a CoAP CON PUT
request targeted to the session resource URI. The UAC will include
the offer for the new changed session in the message payload. If the
UAS agrees on the new session description, it sends back a CoAP
CON 2.04 “Changed” response containing the new representation
(i.e., the answer describing the changed session). The CON 2.04 is

3.7 Performance Evaluation 109

CON DELETE session_id

ACK 2.02 Deleted ACK

UACUAC

(a) (b)

UAS UAS

CON 4.04 Not Found

Figure 3.15 Session terminated by (a) UAC and (b) UAS.

then confirmed by the UAC and the session modification can be
applied by both endpoints.

If the UAS wants to change the session, a new answer (compatible
with the offer provided by the UAC during the setup) should be sent.
According to the CoAP Observe option extension, this is performed
by sending a new CoAP CON 2.04 “Changed” response reporting the
same Token option included in the original POST request that created
the session. Figure 3.16 shows the UAC- and UAS-initiated session
modification procedures.

3.7 Performance Evaluation

3.7.1 Implementation

In order to provide a proof-of-concept of the proposed session
initiation protocol and to evaluate and compare its performance
with other mechanisms, the proposed protocol and some testing
applications have been implemented. The implementation is based on
Java, due to its simplicity, cross-platform support, and the availability
of a CoAP library [23], which has been suitably extended with the

110 3 Interoperability

CON PUT session_id

ACK 2.04 Changed ACK

UACUAC UAS

(a) (b)

UAS

CON 2.04 Changed

Figure 3.16 Session updated by (a) UAC and (b) UAS.

session initiation mechanisms described in Section 3.6.2.1. As a proof-
of-concept, we implemented two reference applications:

• a CoAP UA, which allows the establishment of end-to-end audio
sessions;

• a CoAP server, which provides a simple data retrieval service, with
periodic data notification.

The first application consists of an UA, including both UAC and UAS
components, which allows establishment and tear down of unidirec-
tional or bidirectional RTP audio flows between the two UAs. This
application is based on a standard SIP UA [33], modified in order to
handle session setup according to the proposed protocol. The audio
session (i.e., the RTP flows) is negotiated through the standard SDP
protocol using the classical offer/answer model.

The second application is a simple server that allows a client to ini-
tiate a data retrieval service (for example, to receive values provided
by a sensor) by establishing a data session with a server and specifying
the encoding data format and the receiver socket address. Raw data
are then encapsulated and sent in UDP packets.

The source code of the extended CoAP library, together with the two
reference applications, is freely available [34].

3.7 Performance Evaluation 111

3.7.2 Experimental Results

We conducted experimental evaluations in order to compare the pro-
posed solution with other protocols and mechanisms. We first com-
pared our protocol with other standard and non-standard session ini-
tiation signaling protocols by running the same UA (suitably modified)
using three different underlying session setup protocols:

• standard SIP;
• a compressed version of SIP that encodes SIP signaling in a CoAP-

compatible binary message format (reusing CoAP syntax) [35];
• the new CoAP-based session initiation protocol proposed here.

The evaluation results are reported in Figure 3.17. The average size
per message of the exchange are reported for the three types of signal-
ing protocol. In all three cases, SDP was used for the session nego-
tiation. In particular, an SDP offer (115 B) was included within the
SIP INVITE and the CoAP POST requests. The SDP answer (115 B)
was included in the SIP 200 “OK” and CoAP 2.01 “Created” responses.

3000

2500

2000

N
e

tw
o

rk
 t

ra
ff
ic

 [
B

]

1500

1000

CoAP-based CoSIP SIP

500

SIP 200 OK (BYE); CoAP ACK

SIP BYE; CoAP CON DELETE

SIP ACK; CoAP ACK

SIP 200 OK; CoAP 2.01 Created

SIP 180 Ringing

SIP 100 Trying; CoAP ACK

SIP INVITE; CoAP CON POST

0

Figure 3.17 Network traffic comparison between three session initiation
mechanisms: RESTful (CoAP-based), compressed SIP (re-using CoAP-syntax),
standard SIP.

112 3 Interoperability

Table 3.4 Comparison of different session initiation protocols.

Protocol Signaling only Signaling plus SDP

Network Ratio Network Ratio
traffic [B] over SIP traffic [B] over SIP

SIP 2433 1 2663 1
Compressed SIP 1249 0.51 1479 0.55
CoAP 65 0.027 295 0.11

Table 3.4 shows the total number of bytes transmitted in the exchange
for the three signaling protocols, comparing the network traffic with-
out and with SDP payload, and the ratio of the traffic volume compared
to standard SIP for each.

It is possible to note that, while standard SIP requires the trans-
mission of 2663 B (2433 B for SIP signaling only), the proposed
CoAP-based approaches requires only 295 B to be transmitted (only
65 B for CoAP signaling), representing a large decrease. In fact, the
ratio between the proposed approach and SIP is only 0.027, so the
gain is significant. The gain, in terms of overall network traffic, is due
to:

• the low-overhead of binary CoAP compared to the verbosity of
text-based SIP;

• the design of SIP, which is mainly intended for rich multimedia
applications and not for IoT scenarios.

The proposed solution is better suited to meeting the strict require-
ments of constrained environments, which force the adoption of
mechanisms with low overhead in order to minimize energy con-
sumption and to avoid delays due to retransmission (which may occur
when operating in LLNs).

A second comparison was conducted in order to evaluate the two
different CoAP-based approaches for retrieving data from a remote
server. We considered a client interested in receiving data from a
remote server (say, a sensor periodically providing value updates).
The two approaches considered are:

• The CoAP client registers itself with the server as an observer
of the resource (i.e., using the Observe option) and periodically

3.7 Performance Evaluation 113

receives updates of the new resource state according to the CoAP
resource observing model [36] through CoAP NON 2.04 “Changed”
responses.

• The CoAP client establishes a session with server, negotiating both
the receiver socket address and the data encoding format; all data
values are then sent by the server within UDP packets.

Figure 3.18 shows the results in terms of overall generated network
traffic as a function of the number of exchanged packets. The establish-
ment of the session requires more bytes at the beginning of the com-
munication. However, after a few data packets, the solution based on
a CoAP-negotiated session outperforms the solution based on CoAP
observing in terms of overall network traffic. In the tested application,
each update consisted in 4 B of data. CoAP observing introduces an
additional 7 B overhead, resulting in a trade-off point at just after 7
packets. As for the tear-down procedure, the session-based solution
is comparable to session termination through resource observing, so
there is no additional overhead.

400

300

CoAP Observe

CoAP-based Session Initiation

200

N
e

tw
o

rk
 t

ra
ff
ic

 [
B

]

100

0
1 3 5 7 9 11 13 15 17 19 21 23

of packets

25 27 29

Figure 3.18 Network traffic comparison between i) CoAP observing and ii)
session-based data flow as a function of the number of exchanged packets
(adimensional).

114 3 Interoperability

Table 3.5 Comparison of Java bytecode footprints.

Library Support Size [B]

mjCoAP RFC 7252 165227
draft-ietf-core-block
draft-ietf-core-observe

mjCoAP + sessions RFC 7252 177661
draft-ietf-core-block
draft-ietf-core-observe
session initiation

As a final performance metric, the memory footprint introduced by
session establishment logic is considered. Table 3.5 shows a the com-
parison of bytecode footprint for the Java libraries (the jar files) with
and without the session support. The increase of the size is negligible.

3.7.3 Conclusions

Many constrained and non-constrained applications might benefit
from communication models other than REST and pub/sub, and
might require the creation and management of a session (i.e., any
exchange of data between an association of participants). Some
session initiation protocols, such as SIP, have been introduced but SIP
cannot simply be reused in the IoT because of its large overhead which
mean that it cannot meet the requirements of constrained environ-
ments. For this reason, a lightweight protocol for session initiation,
reusing the syntax and semantics of CoAP, and considering a session
as a CoAP resource, can be introduced. In fact, the proposed approach
for session establishment, management, and termination is, by nature,
standard and adheres to the REST paradigm. It provides several advan-
tages such as low-overhead and reuse of existing implementations
(thus, minimizing memory footprint of smart objects).

A Java implementation of the proposed protocol has been used
to conduct a performance evaluation, aiming at highlighting the
advantages, in terms of network traffic (and consequently, on energy-
consumption), over alternative solutions, such as SIP and CoAP
observing. The results show that the proposed lightweight session
initiation protocol meets the IoT’s low-overhead requirements and

3.8 Optimized Communications: the Dual-network Management Protocol 115

that applications that rely on this approach outperform others, based
on different mechanisms, such as SIP sessions and CoAP observing.

3.8 Optimized Communications:
the Dual-network Management Protocol

The trade-off between high-performance data transmission and
low-energy consumption is a long-standing issue in the field of
wireless communications. Efficient data exchange is critical for the
battery-powered mobile devices typically used in distributed surveil-
lance scenarios, which may be required to transmit video or audio
streams between in-network nodes. In such cases, the devices carried
by operators must be as lightweight as possible. However, LLNs do not
provide sufficient bandwidth to meet the requirements of streaming
transmissions, while high-performance communications result in
high energy consumption, shortening the lifetimes of the devices. Here
we present the data-driven IoT-oriented Dual-network Management
Protocol (DNMP), which uses two IP-addressable radio interfaces on
the same node: one with low energy consumption (and throughput)
and one with high throughput (and energy consumption). The
low-power network acts both as an independent data plane and as a
control plane for the high-throughput network, the latter being turned
on whenever necessary to support multimedia streaming. In order
to validate the protocol, we consider the integration of a low-power
IEEE 802.15.4 radio transceiver and a high-throughput IEEE 802.11s
radio transceiver. An extensive experimental investigation is then
carried out, with the following goals:

• investigating the performance of the two overlaid networks
(IEEE 802.15.4 and IEEE 802.11s);

• determining the critical threshold, in terms of amount of data to
be transmitted, beyond which the use of DNMP becomes advanta-
geous.

3.8.1 DNMP Motivations

There are many application fields for IoT devices, ranging from
remote environmental monitoring to smart surveillance. Clearly, the
performance requirements vary significantly as well. For instance,

116 3 Interoperability

in a remote monitoring scenario [37], sensor nodes are statically
deployed and may send only a few data packets per day to a sink node;
a few packet losses are likely to be tolerable. In a smart surveillance
scenario [38], on the other hand, nodes must be able to send video
or audio streams on a mesh/ad-hoc network: resilience and very
low packet-loss rates are key system requirements. In particular,
many surveillance scenarios require the transmission of audio/video
streams between two or more mobile devices: for example, policemen
or firemen can take advantage of this capability to increase their
context awareness during operations. However, in order to maximize
the lifetime of the equipment without burdening the operators with
heavy batteries, it is important to provide mechanisms that minimize
energy consumption.

The IEEE has developed several standards that partially meet the
different requirements of different IoT scenarios. For instance, the
IEEE 802.15.4 standard promises to make the implementation of
systems with years of activity feasible thanks to the adoption of
low-power consumption hardware. In this context, the IETF ROLL
Working Group has introduced RPL (IPv6 Routing Protocol for
Low-Power and Lossy Networks) [39], a lightweight routing protocol
for LLNs. In addition, the research community has developed operat-
ing systems for constrained objects. Among these, we should mention
ContikiOS [40], which, besides supporting low-power standards like
6LoWPAN and RPL, allows for full IP networking with standard IP
protocols such as UDP, TCP, and HTTP.

The IEEE has also defined several standards to achieve high-
performance communication. Among these, IEEE 802.11 is a set
of specifications that provide different standards for wireless net-
working, especially for infrastructured wireless networking. The
most commonly used versions of IEEE 802.11 (IEEE 802.11g and
IEEE 802.11n [41, 42]) rely on access points to collect data from
remote terminals. These standards guarantee bit rates of up to
54 Mbps in g mode or 600 Mbps in n mode. However, these solutions
do not provide mesh networking, a s mode does. In particular, the
IEEE has released the IEEE 802.11s amendment, which extends
IEEE 802.11b/g/n [41, 42] by defining an architecture and a protocol
stack supporting both broadcast/multicast and unicast delivery using
“radio-aware metrics over self-configuring multi-hop topologies” [43].

In order to provide a trade-off between performance and energy effi-
ciency, we here present the IoT-oriented data-driven energy-efficient

3.8 Optimized Communications: the Dual-network Management Protocol 117

Dual-network Management Protocol (DNMP), which relies on the
coexistence of a low-power/low-throughput (LPLT) network and a
high-power/high-throughput (HPHT) network. The former transmits
low-rate data (data plane) and acts as an overlay (control plane) that,
according to the information coming from routing tables, selectively
activates, via IP-based communications, a set of high-speed interfaces
(forming a second data plane). When a large burst of data, such as
a video or an audio stream, needs to be transferred, the low-power
network selectively turns on the high-speed interfaces of the active
nodes along the path between source and destination. When stream-
ing has completed, the low-power network turns off the high-speed
interfaces to avoid wasting energy. We should point out that DNMP
is agnostic about the MAC/routing protocols in the nodes’ protocol
stacks and only requires that the dual radio interfaces are univocally
IP addressable. In order to validate DNMP, we have evaluated its per-
formance, in terms of overhead and latency, using the IEEE 802.15.4
standard for the low-power network (data/control plane) and the
IEEE 802.11s standard for the high-throughput network (data plane)
(see Section 3.8.5). The critical amount of data beyond which DNMP
becomes effective is identified.

3.8.2 Related Work

The idea of using a low-power overlay to control a high-speed net-
work has been considered in the literature. For instance, Gummeson
et al. the authors used two low-power technologies to create a unified
network [44]. In their scheme, the nodes learn about the character-
istics of radio channels through exploration; then, they dynamically
and continuously select the most efficient radio channel among those
available. Although radios are switched at runtime, an abstraction of
a unified link layer is provided to applications running on multi-radio
platforms. However, there was no concept of traffic quality of service
in this study. DNMP, on the other hand, clearly decouples the two net-
works and selects the most appropriate communication interface for
the type of traffic to be transferred.

Sengul et al. propose using multiple radios to transmit bursts of
data accumulated at sensors [45]. They highlighted the existence of
a trade-off when deciding whether to rely on low-power devices or
to turn on high-speed interfaces. A similar approach was proposed
by Wan et al., who triggered their high-speed interfaces as soon as

118 3 Interoperability

network congestion was detected on the low-power interfaces [46].
Unlike these approaches, DNMP is more general and can be exploited
for any kind of data transfer. In addition, in the Sengul and the Wan
approaches [45, 46], the high-speed plane is used only as backup for
the low-power plane, whilst in DNMP the two planes can be used
simultaneously.

Stathopoulos et al. used an IEEE 802.15.4 network to switch on
IEEE 802.11g interfaces [47]. DNMP can be seen as a formalized
extension of this approach, since we generalize the wake-up mecha-
nism to any pair of radio interfaces. In addition, since we utilize the
presence of IP-addressable interfaces, the DNMP approach is general
and agnostic of protocols running at lower layers.

The growing interest in dual-radio devices is witnessed by the
efforts made by the scientific community to develop energy-efficient
hardware. Jurdak et al. used two IEEE 802.15.4 transceivers to achieve
high throughputs with reduced energy consumption [48]. In DNMP,
no specific standards are considered a priori. However, as described
in Section 3.8.4, as this work focuses on IoT scenarios, the validation
has been carried out by integrating a TelosB mote, acting as an
IEEE 802.15.4 radio interface, and an IEEE 802.11s dongle, acting as
the corresponding interface, on a Raspberry Pi.

3.8.3 The DNMP Protocol

DNMP is a lightweight User Datagram Protocol (UDP)-based
application-layer protocol intended to provide a simple mechanism
to allow devices equipped with a LPLT radio interface and a HPHT
radio interface to establish efficient end-to-end routes between pairs
of nodes over a multi-hop network.

The LPLT radio interface is managed by an IP-based communication
protocol, denoted as RPlow. DNMP exploits RPlow as a control-plane
protocol to setup one or more routes from a given source to an
intended destination, using the HPHT interface, which, in turn, is
managed by a data-plane protocol, denoted as RPhigh. Depending on
the user application needs, the DNMP control plane RPlow switches
on and off the HPHT interfaces. This represents an RPhigh overlay
that can be used when there are transmissions with high-throughput
requirements (e.g., multimedia streaming), for which LPLT interfaces
are unsuitable.

According to DNMP, each node keeps a counter, referred to as Chigh,
of the number of RPhigh routes that require its HPHT interface to be

3.8 Optimized Communications: the Dual-network Management Protocol 119

active to ensure end-to-end communication between the requesting
source/destination pairs. LOCK and UNLOCK messages are used,
respectively, to increment and decrement each involved Chigh by 1.
The value of a node’s Chigh depends on the number of concurrent
routes that can be set up; more precisely, if a node is needed for n
different routes, its Chigh value is n. When a node’s Chigh reaches 0, this
node can switch its RPhigh interface off because it is no longer needed
in any route. DNMP is based on a request/response communication
model and defines the syntax of request and response messages that
are used to map the LOCK and UNLOCK operations. As DNMP
is UDP-based, it provides mechanisms for reliable message trans-
mission, specifying retransmission of requests that did not receive a
response, with an exponential backoff.

We note that according to DNMP, the RPlow protocol can be used,
not only as a control-plane protocol, but also as a data-plane protocol
for transmissions requiring a bit-rate below a certain threshold (i.e.,
not requiring the throughput provided by RPhigh). The role of RPlow is
left to the application, which can decide whether to use DNMP (thus
dynamically switching between RPlow and RPhigh) or not, depending on
the bit-rate requirements of the data transmission.

DNMP message format
DNMP messages are encoded in a simple binary format. Each mes-
sage starts with five fixed-size fields, as specified in Table 3.6. These
are followed by a variable number of “Hop ID” message fields.

Route establishment
DNMP sets up RPhigh routes in a three-phase process, as shown in
Figures 3.19–3.21. The first stage of the process, called “locking”,
switches on all RPhigh radio interfaces of the devices that are on
the RPlow route from a given source to a specific destination, using
a LOCK message. After the locking, the route identification stage
determines which DNMP nodes are actually needed for the multi-hop
communication over RPhigh. Finally, the unlocking stage can be used
to switch off, using UNLOCK messages, all the RPhigh radio interfaces
that are not needed for the end-to-end communication among the
specified endpoints. This prevents unnecessary energy consumption
by the RPhigh radio interface.

Locking phase When a source node, denoted as S, needs more
bandwidth for transmitting data to a destination node, denoted as D,

120 3 Interoperability

Table 3.6 DNMP message fields.

Field
Length
(bits) Description

Version 2 Indicates the DNMP version number.
Code 6 Split into a 3-bit class (most significant bits)

and a 3-bit detail (least significant bits),
documented as c.dd, where c and dd are two
digits from 0 to 7.
The class can indicate:
• a request (0 = (000)2),
• a success response (2 = (010)2),
• a client error response (4 = (100)2),
• a server error response (5 = (101)2).

Message ID 16 Used to detect duplicate messages and to
match request/response messages.

Sender ID 8 The RPlow short address of the originator of the
request, i.e., the node willing to setup a
RPhigh route to another node.

Destination ID 8 The RPlow short address of the target of the
request, i.e., the node the RPhigh route needs to
reach.

Hop ID 8 The RPlow short address of the intermediate
node that has received the request. This field is
used for route-tracing purposes over RPlow.
By reporting the list of traversed nodes, the
sender can learn about which nodes have
increased their RPhigh interface counter.

it sends a LOCK request through the RPlow control-plane protocol,
to select the next-hop node R1 (at the network layer) in the direction
towards D by exploiting its RPhigh routing table to extract R1’s IP
address. On receiving the LOCK request, R1 increments its Chigh
by 1 and, if previously off, switches its RPhigh interface on. Next, R1
appends its identifier to the tail of the request message, in order to
trace that it has received and processed the message. Finally, R1 selects
the receiving node R2 in the next hop and relays the updated request
message. These steps are repeated until the LOCK request reaches D.
The request message received by D contains all the identifiers of the

3.8 Optimized Communications: the Dual-network Management Protocol 121

1

1
2

5

5

2

6 DS

S

ON

LOCK

LOCK

LOCK RESP

LOCK

LOCK

ON ON ON ONOFF OFF

S 5

P
H

Y
H

P
H

T
 r

a
d
io

(I
E

E
E

 8
0

2
.1

1
s
)

L
P

LT
 r

a
d
io

(I
E

E
E

 8
0

2
.1

5
.4

 w
it
h

 R
P

L
)

6 31 D

3

4
3

2

2 5 6 3 D1

Figure 3.19 DNMP message flow for the RPhigh route establishment: locking.

nodes that relayed the message. At this point, D sends a response
message to S as an acknowledgement, including the identifiers of all
the intermediate nodes so that S becomes aware of the route that the
request has followed. This procedure is shown in Figure 3.19.

Route identification phase At the end of the locking phase, the
LOCK request issued by S has reached D, and all intermediate nodes
{Ri} have incremented their Chigh. S can now issue a trace request
for D in order to learn which nodes are actually needed to route a
message to D using RPhigh. The nodes that are not needed for the
RPhigh multihop communication between S and D are then put in a
list, called the unlock list (UL), while nodes that are needed are put in
another list, called the locked list (LL). The main steps of this phase
are shown in Figure 3.20.

Unlocking phase Finally, S sends an UNLOCK request over RPlow to all
nodes in the UL, which have increased their Chigh but are not needed
for the end-to-end communication between S and D. After receiving
the UNLOCK request, an intermediate node decrements its Chigh by 1
and, if Chigh reaches 0, switches off its RPhigh interface to save energy.
After doing so, the node sends a response back to S to acknowledge
that it has received and processed the request. The steps of the unlock-
ing phase are shown in Figure 3.21.

122 3 Interoperability
P

H
Y

H
P

H
T

 r
a

d
io

(I
E

E
E

 8
0
2
.1

1
s
)

L
P

LT
 r

a
d

io
(I

E
E

E
 8

0
2
.1

5
.4

 w
it
h
 R

P
L
)

S

ON ON ON ON ONOFF OFF

2

2

1

2
TRACE TRACE

5

5 6

3

1

2

6 3 D1

S

S

2 5 6 3 D

D

1

Figure 3.20 DNMP message flow for the RPhigh route establishment: route
identification.

P
H

Y
H

P
H

T
 r

a
d
io

(I
E

E
E

 8
0
2
.1

1
s
)

L
P

LT
 r

a
d
io

(I
E

E
E

 8
0
2
.1

5
.4

 w
it
h
 R

P
L
)

S

ON OFF ON OFF ONOFF OFF

2

UNLOCK

UNLOCK

5

5 6

3

1

2
1

2

6 3 D1

S

S

2 5 6 3 D

D

1

Figure 3.21 DNMP message flow for the RPhigh route establishment: unlocking.

Route tear-down
When S completes its RPhigh data transmission to D, it sends
UNLOCK requests to the nodes that are in the LL, so that each of
these nodes decreases by 1 the value of Chigh and, if possible, turns off
its HPHT interface.

3.8 Optimized Communications: the Dual-network Management Protocol 123

3.8.4 Implementation with IEEE 802.15.4 and IEEE 802.11s

In order to validate DNMP, we considered an IEEE 802.15.4 LPLT
interface and an IEEE 802.11s HPHT interface. In the following,
we first provide more details on the two standards and then we
characterize their DNMP-based integration on a node.

3.8.4.1 LPLT Networking
The IEEE 802.15.4 standard, which defines physical (PHY) and
medium access control (MAC) layers for wireless personal area
networks (WPANs), targets reduced energy consumption and ubiq-
uitous communications. Although IEEE 802.15.4 can operate on
three ISM frequency bands, here we use the band at 2.4 GHz since
it offers the largest channel bandwidth and allows for bit rates of
250 kpbs. Although the maximum transmit power defined by the
standard is around 0 dBm, the transmission range is about 100 m with
currently available transceivers. At the MAC layer, the IEEE 802.15.4
standard uses a carrier sense multiple access with collision avoidance
(CSMA/CA) strategy to minimize energy dissipation. Since the imple-
mentation of the LPLT network is carried out via a TelosB running
the Contiki OS (an open-source operating system for low-power
nodes) [40], we use the ContikiMAC protocol [49], which allows
us to achieve useful energy savings by cyclically turning on and off
radio interfaces. In order to provide full in-network connectivity,
we rely on RPL, which is emerging as the de facto routing protocol
for constrained networks. RPL allows us to build a multi-hop and
dynamically reconfigurable routing tree between each pair of nodes
in the network. Finally, at the transport layer, we use UDP, since it is
more suitable for constrained nodes than traditional TCP.

3.8.4.2 HPHT Networking
The IEEE 802.11s standard is an amendment of the IEEE 802.11
standard and is fully compliant with the IEEE 802.11b/g/n standards.
While IEEE 802.11b/g/n networks operate only in infrastructure
mode – that is, all communications are centralized – the IEEE 802.11s
standard overcomes this limitation to enable mesh networking. The
maximum transmit power allowed by the standard is 20 dBm, which is
100 times higher than that used by IEEE 802.15.4. Due to its inherent
dependence on IEEE 802.11n, IEEE 802.11s operates at a maximum
net data rate ranging from 54 to 600 Mbps (when it uses 40 MHz

124 3 Interoperability

channels and is configured to support multiple-input multiple-output
communications and frame aggregation).

For medium access, mesh stations implement the mesh coordina-
tion function (MCF). MCF relies on the contention-based protocol
known as enhanced distributed channel access (EDCA), which is itself
an improved variant of the basic IEEE 802.11 distributed coordina-
tion function (DCF). Using DCF, a station transmits a single frame of
arbitrary length. With EDCA, a station may transmit multiple frames
whose total transmission duration may not exceed the so-called trans-
mission opportunity limit. The intended receiver acknowledges any
successful frame reception. The default path selection protocol fore-
seen by the IEEE 802.11s standard, called the hybrid wireless mesh
protocol (HWMP), combines the concurrent operations of a proactive
tree-oriented approach with an on-demand distributed path selection
protocol derived from the ad-hoc on-demand distance vector proto-
col. The proactive mode requires a mesh station to be configured as a
root mesh station.

3.8.4.3 Node Integration
The two reference (LPLT and HPHT) standards were integrated on a
single node in order to deploy a real testbed for dual-interface nodes.
Regarding the IEEE 802.15.4 standard, the chosen node is a SkyMote
TelosB. TelosB is the best known mote, and is a verified hardware plat-
form that uses Contiki OS. According to the CC2420 datasheet,3 the
mote consumes 50 mW in transmission/reception phases and 0.24𝜇W
in sleep mode. As for the IEEE 802.11s standard, the choice of the
USB dongle was not straightforward, because compatibility with the
IEEE 802.11s draft strictly depends on the available drivers for the
chosen platform. Our choice fell on the TP-LINK TL-WN722n USB
dongle, as there is open source firmware for its chipset (the Atheros
AR9271). This firmware can be compiled on different platforms and
natively supports the mesh point mode. The power consumption of
the TP-LINK IEEE 802.11s interface is 1.1 W in transmission mode
and 0.2 W in reception mode. The model used operates at a voltage
of 3.3 V and has no power consumption in sleep mode.4 The selected
radio interfaces have then been integrated on a Linux-powered Rasp-
berry Pi rev.B, whose two USB ports have been used to connect the

3 http://inst.eecs.berkeley.edu/\HCode{<SPitie/>}cs150/Documents/CC2420.pdf.
4 https://wikidevi.com/wiki/Atheros_AR9271.

3.8 Optimized Communications: the Dual-network Management Protocol 125

Figure 3.22 Picture of the
integrated node. A
Raspberry Pi hosts a TelosB
mote as IEEE 802.15.4
interface and a TP-LINK as
IEEE 802.11s interface.

TelosB and the Wi-Fi dongle. The integrated dual-interface node is
shown in Figure 3.22.

The DNMP code was developed in C for Contiki OS. This allows us
to have low-level control over the IEEE 802.15.4 network, enabling us
to format UDP packets correctly and to handle routing. If, according
to the LOCK-UNLOCK policy, RPlow has to modify the state of the
RPhigh interface, Contiki OS has to speak with the Raspberry Pi and
make some modifications to the actual network configuration. In order
to communicate with the TelosB, we have adapted the serialdump.c
serial console provided with Contiki OS, enabling the motes to parse
the data coming from the serial port and to react appropriately to the
various messages. In this way, serialdump.c becomes a sort of “dae-
mon”, listening on the serial port for potential messages of interest.
Due to its characteristics, serialdump.c is also in charge of the HWMP
route-identification and unlocking phases, as outlined in Section 3.8.3.

3.8.5 Performance Evaluation

In this section, we analyze the performance of the proposed overlaid
dual-radio system. The chosen scenario consists of a surveillance
network for infrastructure monitoring. In the presence of an alarm,
high-priority data (such as a video stream) needs to be transmitted
from the terminal of an operator to the terminal of another operator.

3.8.5.1 Experimental Setup
The testbed consists of a linear network of DNMP-enabled dual-radio
nodes (an example of such an application would be for monitoring

126 3 Interoperability

First: all 802.11s interfaces on RPL route are turned ON

Second: Useless 802.11s interfaces are then turned OFF

802.15.4

messages

802.15.4

message

802.15.4

Tx range

802.15.4

Tx range

802.11s

Tx range

802.11s

Tx range

ON

ON

ONON

ONOFF

OFF

ON

ON

OFF

2

4

2

5

5

41

1

3

3

Figure 3.23 IEEE 802.15.4 vs. IEEE 802.11s transmission ranges.

the perimeter of a building). Using the maximum transmit power, the
transmission range of the IEEE 802.11s dongles is nearly twice the
transmission range of IEEE 802.15.4 TelosB motes (Figure 3.23).

We refer to the scenario shown in Figures 3.19–3.21, with a sequence
of five nodes. Node S wants to communicate with node D. If nodes
S and D use only the IEEE 802.15.4 network, they need to create a
four-hop route, since every node has radio visibility of only its clos-
est neighbors. On the other hand, if nodes communicate through the
IEEE 802.11s network, HWMP, which IEEE 802.11s uses for routing,
leads to the creation of a two-hop route between the two nodes.

3.8.5.2 Operational Limitations of IEEE 802.15.4
We first investigate the features and limitations of the IEEE 802.15.4
standard. In particular, the gap, in terms of performance, between ideal
Contiki nodes (simulated in the Cooja simulator) and real nodes (oper-
ating in an indoor scenario) needs to be determined. The analysis evi-
denced a significant difference between real and ideal nodes, in terms
of packet-loss rate and average delay. In particular, in order to per-
form simulations of the experimental scenario, we fine-tuned Cooja.
After some testing, we heuristically set the transmission and recep-
tion probabilities of each node to 0.95. By doing so, the performance
of the simulated and real nodes showed the same trends. Due to the
limited number of available dual-radio nodes, analysis of deployments
involving larger numbers of nodes relied on simulations.

The performance of IEEE 802.15.4 is investigated by simulating
a very low bit-rate service, namely, an audio stream with a rate

3.8 Optimized Communications: the Dual-network Management Protocol 127

 100

 200

 300

 400

 500

 600

 700

 800

50 10
0

15
0

19
2

25
2

30
2

55
2

T
ra

n
s
m

is
s
io

n
 t
im

e
 [
m

s
]

Applicative payload [B]

1 Hop
2 Hops
3 Hops
4 Hops

Figure 3.24 Experimental results: transmission time as a function of the payload
size.

of 1008 Byte/s. This bit rate was chosen since Contiki has severe
constraints on the dimension of the IPv6 buffer, which limits the size
of the payload of IPv6 packets. Low-power devices, such as TelosB
motes, have very limited RAM – of the order of a few kilobytes – so
that memory allocation to build and send IPv6 packets is a practical
issue.

In Figure 3.24, the transmission time is shown as a function of the
payload. In particular, the results show that increasing the packet
payload does not significantly affect the performance of the network
for buffer-size dimensions below 300 B (i.e., 252 B at the application
layer). On the contrary, for larger packet dimensions, the packet is
fragmented, thus leading to higher transmission latency.

At this point, we set the packet size to 300 B and we configure the
nodes to exchange data using UDP over IPv6. Thus, the packet is struc-
tured as follows:

• 40 B of IPv6 header
• 8 B of UDP header
• 252 B of application data.

With this configuration, we investigate the feasibility of the
IEEE 802.15.4 standard for media streaming. In particular, we
simulate in Cooja the transmission of a 5 s audio stream (at 1008 B/s)
in a multi-hop network. Even this low rate can have a negative impact
on network performance, in terms of packet-loss rate, as shown in
Table 3.7. In fact, the packet loss reaches 45% with six hops and 50%

128 3 Interoperability

Table 3.7 Packet-loss rate at different hops for a 5 s audio stream at 1008 B/s
(i.e., 5 kB).

Number of hops 1 2 3 4 6 8 10

Packet-loss rate 0% 5% 5% 15% 45% 50% 50%

 0

 1

 2

 3

 4

 5

 6

 7

1 2 3 4 6 8 10

T
ra

n
s
m

is
s
io

n
 t
im

e
 [
s
]

Hop number

Avg TX time
95% CI

Figure 3.25 Experimental results: average transmission time with 95%
Confidence Interval (CI), as a function of the number of hops from source to
destination.

with eight or more hops. The packet loss under the IEEE 802.15.4
protocol is mainly due to collisions between packets and limited
buffer queues. In fact, when a node acting as relay tries to forward
a packet, it may still find the medium busy because of another data
transmission. Since queue sizes at nodes are limited and intermediate
nodes cannot store all the received data, the network experiences
significant packet loss.

Figure 3.25 shows the average time required to send an IPv6
packet – part of a 20-packet stream – between source and destina-
tion, as a function of the number of hops. As expected, this time is
approximately a linearly increasing function of the number of hops.

In Figure 3.26, the performance of an IEEE 802.15.4 network, in
terms of packet-loss rate, is shown as a function of the number of
hops. In this case, the offered load on the network is given by a 1 min
long 1008 B/s stream; that is, 60kB. This makes the performance
even worse: the packet-loss rate increases to 39% for a four-hop
transmission and to 53.75% for a six-hop transmission.

3.8 Optimized Communications: the Dual-network Management Protocol 129

 0

 10

 20

 30

 40

 50

 60

 70

P
a
c
k
e
t
lo

s
s
 [
%

]

1 2 3 4 6 8 10

Hop number

Figure 3.26 Experimental results: packet-loss rate as a function of the number of
hops from source to destination.

The results show that a multi-hop IEEE 802.15.4 network cannot
meet the strict requirements of real-time streaming applications, in
terms of packet-loss rate and delay, in networks where communica-
tion routes may have more than four hops. However, in the case of very
low-rate audio streaming over networks with a small value of the max-
imum number of hops, such requirements could be met. It must be
remarked that there will always be a limitation on the stream duration:
injecting more data into the network (say, by transmitting for 1 min at
1008 B/s) may lead to a breakdown of the IEEE 802.15.4 network, thus
making communications impractical. Therefore, high-bandwidth and
high-performance services cannot run on IEEE 802.15.4 networks.

3.8.6 IEEE 802.15.4-controlled Selective Activation
of the IEEE 802.11s Network

While IEEE 802.15.4 is suitable for lightweight tasks, requiring
the transmission of only small amounts of data, as shown above
it is not possible to rely on it for real-time, high-bandwidth, and
low-latency applications. The next phase of our experimentation
aims at determining the threshold amount of data that makes it more
convenient to rely on DNMP to activate a HPHT network. We refer
to the same linear topology considered in Section 3.8.5.1: while for
the IEEE 802.15.4 network, four hops are needed, only two hops
are needed for IEEE 802.11s network. We consider the transmission
of a fixed amount of application data (payload) and analyze the

130 3 Interoperability

time required to transmit the payload with the proposed hybrid
IEEE 802.15.4/IEEE 802.11s approach (with DNMP). As considered in
Section 3.8.5.2, in the IEEE 802.15.4 network the payload is inserted
into UDP/6LoWPAN packets of 300 B (i.e., 252 B of payload per
packet at the application layer). In the IEEE 802.11s network, the
payload is sent in a standard UDP/IPV4 packet.

Referring to DNMP, the total transmission time is made up of:

• the transmission time of the DNMP LOCK message from the source
to the destination (IEEE 802.15.4 network);

• the time needed to turn the IEEE 802.11s interfaces on
(IEEE 802.11s network);

• the time to create high-speed routes successfully (IEEE 802.11s net-
work).

The performance comparison was carried out by considering the mean
round trip time (RTT) of a DNMP message in the deployed five-node
IEEE 802.15.4 network. In particular, the RTT accounts for:

• the transmission of the DNMP request message;
• the processing of the message at the application layer by Contiki OS

on each relay node;
• the transmission of the response back to the source node.

The time between the instant when the IEEE 802.11s interface is
switched on and the instant when the transmission towards the
destination is possible has been experimentally measured at 3.237 s.
This delay is due to kernel calls that start the radio networking and
the traffic needed by the HWMP protocol to set up the routing.

In Figure 3.27, the time (dimension: [s]) required for the data
to reach the destination is shown as a function of the payload size
(dimension: [B]). While the time required using only the IEEE 802.15.4
network increases significantly with the payload size, with DNMP,
after an initial setup time, the transmission time still increases,
but almost negligibly with respect to the single IEEE 802.15.4 net-
work case. The results show that the threshold below which the
DNMP-based approach becomes inefficient is ∼2 kB.

3.8.7 Conclusions

DNMP is an innovative IP-based application-layer protocol that
allows high-bandwidth radio interfaces to be adaptively turned

3.9 Discoverability in Constrained Environments 131

12

10
08

20
16

40
32

80
64

10

8

6

4

2

Applicative payload [B]

T
ra

n
s
m

is
s
io

n
 t

im
e

 [
s
] DNMP with IEEE 802.11s

IEEE 802.15.4

0

Figure 3.27 Experimental results: transmission time as a function of the payload
size using IEEE 802.15.4 and IEEE 802.11s.

on and off, in order to support high-throughput and low-latency
transmissions. In particular, it only requires the presence of an LPLT
interface (acting as both data and control plane) to activate an HPHT
interface (data plane). By leveraging on the routes created by the LPLT
network, nodes manage to signal and wake up only the minimum set
of nodes that guarantee data transmission via the HPHT network. In
order to provide an exhaustive performance evaluation of DNMP, we
integrated an IEEE 802.15.4 transceiver (LPLT) and an IEEE 802.11s
(HPHT) transceiver on a Raspberry Pi. We then investigated the
performance of the DNMP-based overlaid networks, determining
the critical threshold, in terms of amount of data to be transmitted,
beyond which the use of DNMP becomes advantageous. In the
considered experimental scenario this critical threshold is ∼2 kB.

3.9 Discoverability in Constrained
Environments

3.9.1 CoRE Link Format

The Constrained RESTful Environments (CoRE) approach imple-
ments the REST architecture in way that supports constrained smart
objects and networks (e.g., 6LoWPAN). The discovery of resources
hosted by a server is fundamental for M2M scenarios. The HTTP “web
discovery” of resources is defined in RFC 2616 [2] and the description

132 3 Interoperability

of relations between resources is defined as “web linking” [12].
The CoRE Link Format specification [13] defines the discovery of
resources hosted by a constrained web server, their attributes, and
other resource relations such as CoRE resource discovery.

The main function of such a discovery mechanism is to provide
universal resource identifiers (URIs, commonly called “links”) for
the resources hosted by the smart object. The resources are com-
plemented by attributes about those resources and possible further
link relations. In CoRE, this collection of links is represented as a
resource of its own (in contrast to the HTTP headers, which are
delivered along with a specific resource). The RFC document specifies
a link format for use in CoRE resource discovery by extending the
HTTP Link header format [12] to describe these link descriptions.
The CoRE Link Format is carried as a payload and is assigned an
Internet media type. A “well-known” relative URI /.well-known/
core is defined as a default entry point for requesting the list of
links about resources hosted by a server node and thus performing
CoRE resource discovery. This approach is suitable for adoption in
combination with CoAP, HTTP, or any other web transfer protocol.
The link format can also be saved in file format.

The CoRE Link Format is a serialization of a typed link describing
the relationships between resources: so-called “web linking”. In
the RFC, web linking is extended with specific constrained M2M
attributes; links are carried as a message payload rather than in an
HTTP link header field, and a default interface is defined to discover
resources hosted by a server. This specification also defines a new
relation type: “hosts”. These identify that the resource is hosted by the
server from which the link document was requested.

In HTTP, the link header is used to keep link information about a
resource along with an HTTP response. In CoRE, the main use case
for web linking is the discovery of which resources a server hosts in
the first place. Some resources may have additional links associated
with them and, for that reason, the CoRE link format serialization is
carried as a resource representation of the well-known URI. The CoRE
link format reuses the format of HTTP link header serialization.

3.9.1.1 CoRE Link Format: Discovery
In IoT applications, there is the concrete need for local clients
and servers to find and interact with each other without human
intervention or any prior configuration. The CoRE Link Format can

3.9 Discoverability in Constrained Environments 133

be used by smart objects hosting resources in such environments
so as to enable discovery of the resources hosted by the server.
Resource discovery can be performed either in unicast or multicast
mode. When a server’s IP address is already known, either a priori or
resolved via the DNS [50, 51], unicast discovery is performed in order
to locate the entry point to the resource of interest. In CoRE Link
Format, this is performed using a GET to /.well-known/core
on the server, which returns a payload in the CoRE Link Format.
A client would then match the appropriate resource type, interface
description, and possible media type [52] for its application. These
attributes may also be included in the query string in order to filter
the number of links returned in a response.

Multicast resource discovery is useful when a consumer wants to
locate a resource within a limited local scope, and that scope supports
IP multicast. A GET request to the appropriate multicast address
is made for /.well-known/core. In order to limit the number
and size of responses, a query string is submitted with the known
attributes of the resource. Typically, a resource would be discovered
based on its resource type and/or interface description, along with
possible application-specific attributes.

3.9.1.2 Link Format
The CoRE Link Format (see Listing 3.1) extends the HTTP Link header
field specified in RFC 5988 [12]. The format is compact and exten-
sible does not require special XML or binary parsing. This link for-
mat is just one serialization of the typed links defined in the stardard;
others include HTML links, Atom feed links [53], and HTTP Link
header fields. The CoRE link format defines the Internet media type
“application/link-format”, encoded as UTF-8. UTF-8 data can be com-
pared bitwise, which allows values to contain UTF-8 data without any
added complexity for constrained nodes. The CoRE Link Format is
equivalent to the RFC 5988 ([12]) Link Format, but the augmented
Backus-Naur form in the present specification is repeated along with
some improvements, so as to be compliant with RFC 5234 [54]. It also
includes new link parameters. The link parameter “href” is reserved for
use as a query parameter for filtering in this specification, and must not
be defined as a link parameter. Multiple link descriptions are separated
by commas. Note that commas can also occur in quoted strings and
URIs but do not end a description. In order to convert an HTTP link
header field to this link format, the “Link:” HTTP header is removed,

134 3 Interoperability

any linear whitespace is removed, the header value is converted to
UTF-8, and any percent- encodings are decoded.
Listing 3.1 CoRE link format specification as in RFC 6690.

Link = link-value-list
link-value-list = [link-value *["," link-value]]
link-value = "<" URI-Reference ">"

*(";" link-param)
link-param = (("rel" "=" relation-types)

/ ("anchor" "=" DQUOTE URI-Reference
DQUOTE)

/ ("rev" "=" relation-types)
/ ("hreflang" "=" Language-Tag)
/ ("media" "=" (MediaDesc

/ (DQUOTE MediaDesc DQUOTE)))
/ ("title" "=" quoted-string)
/ ("title*" "=" ext-value)
/ ("type" "=" (media-type
/ quoted-mt))
/ ("rt" "=" relation-types)
/ ("if" "=" relation-types)
/ ("sz" "=" cardinal)
/ (link-extension))

link-extension = (parmname ["=" (ptoken
/ quoted-string)])
/ (ext-name-star "=" ext-value)

ext-name-star = parmname "*" ; reserved
for RFC-2231-profiled

; extensions.
Whitespace NOT

; allowed in between.
ptoken = 1*ptokenchar
ptokenchar = "!" / "#" / "$" / "%" / "&" / "’" / "("

/ ")" / "*" / "+" / "-" / "." / "/"
/ DIGIT
/ ":" / "<" / "=" / ">" / "?" / "@"
/ ALPHA
/ "[" / "]" / "∧" / "_" / "‘" / "{" / "|"
/ "}" / "∼"

media-type = type-name "/" subtype-name
quoted-mt = DQUOTE media-type DQUOTE
relation-types = relation-type

/ DQUOTE relation-type
*(1*SP relation-type) DQUOTE

relation-type = reg-rel-type / ext-rel-type
reg-rel-type = LOALPHA *(LOALPHA / DIGIT / "." / "-")
ext-rel-type = URI
cardinal = "0" / (%x31-39 *DIGIT)
LOALPHA = %x61-7A ; a-z
quoted-string = <defined in [RFC2616]>

3.9 Discoverability in Constrained Environments 135

URI = <defined in [RFC3986]>
URI-Reference = <defined in [RFC3986]>
type-name = <defined in [RFC4288]>
subtype-name = <defined in [RFC4288]>
MediaDesc = <defined in [W3C.HTML.4.01]>
Language-Tag = <defined in [RFC5646]>
ext-value = <defined in [RFC5987]>
parmname = <defined in [RFC5987]>

3.9.1.3 The Interface Description Attribute
The interface description “if” attribute is an opaque string used to pro-
vide a name or URI indicating a specific interface definition used to
interact with the target resource. This attribute describes the generic
REST interface to interact with a resource or a set of resources. It
is expected that an interface description will be reused by different
resource types, for example the resource types “outdoor-temperature”,
“dew-point”, and “rel-humidity”. Multiple interface descriptions may
be included in the value of this parameter, each separated by a space,
similar to the relation attribute.

The interface description can be also the URI of a web appli-
cation description language (WADL) definition of the target
resource http://www.example.org/myapp.wadl#sensor,
a URN indicating the type of interface to the resource, such as
“urn:myapp:sensor”, or an application-specific name, such as “sensor”.
The Interface Description attribute must not appear more than once
in a link.

3.9.2 CoRE Interfaces

The resource discovery offered by a smart object is a fundamental ele-
ment in IoT applications. The discovery of resources provided by an
HTTP web server is defined by the web linking RFC [12] and its adop-
tion for the description and discovery of resources hosted by smart
objects is specified by the CoRE Link Format 3.9.1 and can be used by
CoAP or HTTP servers. The CoRE Link Format defines an attribute
that can be used to describe the REST interface of a resource, and may
include a link to a description document.

The CoRE Interfaces document [55] defines the well-known REST
interface descriptions for resource types in constrained environments
using the CoRE Link Format standard. A short reference is provided
for each type that can be efficiently included in the interface descrip-
tion attribute (if=) of the CoRE Link Format. A client discovering

136 3 Interoperability

the “if” link attribute will be able to consume resources based on its
knowledge of the expected interface types. In this sense, the interface
type acts in a similar way as a content-format, but as a selector for a
high-level functional abstraction.

The main defined REST interfaces are related to the following
resources:

• sensor
• parameter
• read-only parameter
• actuator.

Each of them is described with the corresponding value of the
interface description attribute (if) and the associated valid methods.
These interfaces can support plain text and/or Sensor Markup
Language (SenML) media types (see Section 3.10). Table 3.8 and
Sections 3.9.2.1–3.9.2.4 will present available interfaces and their
characteristics.

When a value for the if= attribute appears in a link, the associated
resource must implement and support the associated standard REST
interface and may support additional functionality. This approach has
been designed to work within the context of CoRE link format speci-
fications, but is applicable for REST interface definitions.

3.9.2.1 Sensor
The sensor interface allows the reader to access the value of a sensor
resource through a GET request. The media type of the resource
can be plain text or SenML. The former may be used for a single
measurement that does not require metadata and, for a measure-
ment with metadata such as a unit or time stamp, SenML is the best
approach. A resource with this type of interface can also use SenML to

Table 3.8 Interface description summary.

Interface if= Methods Content-Formats

Sensor core.s GET link-format,text/plain
Parameter core.p GET, PUT link-format,text/plain
Read-only Parameter core.rp GET link-format,text/plain
Actuator core.a GET, PUT, POST link-format,text/plain

3.9 Discoverability in Constrained Environments 137

return multiple measurements in the same representation. Listing 3.2
reports some examples of sensor interface requests in both text/plain
and application/senml+json formats.

Listing 3.2 Examples of sensor interface requests.

Req: GET /s/humidity (Accept: text/plain)
Res: 2.05 Content (text/plain)
80
Req: GET /s/humidity (Accept: application/senml+json)
Res: 2.05 Content (application/senml+json)
{"e":[

{ "n": "humidity", "v": 80, "u": "%RH" }],
}

3.9.2.2 Parameter
The parameter interface allows configurable parameters/information
to be modeled as a resource. The value of the parameter can be read
using a GET or updated using a PUT request. Both plain text or SenML
media types can be returned. The following example shows a request
for reading and updating a parameter resource.

Listing 3.3 Request for reading and updating a parameter resource.

Req: GET /d/name
Res: 2.05 Content (text/plain)
node5
Req: PUT /d/name (text/plain)
outdoor
Res: 2.04 Changed

3.9.2.3 Read-only Parameter
Following the same approach as for the parameter interface, the
read-only parameter interface only allows the reader to access the
parameter’s configuration using a GET request. Plain text or SenML
media types may be returned from this type of interface and Listing
3.4 shows an example.

Listing 3.4 Example of read-only parameter interface.

Req: GET /d/model
Res: 2.05 Content (text/plain)
SuperNode200

3.9.2.4 Actuator
The actuator interface is associated with resources that model different
kinds of actuators. Examples of actuators include LEDs, relays, motor

138 3 Interoperability

controllers and light dimmers. The value associated to the the actuator
can be read using a GET and updated through a PUT request. Further-
more, this interface allows the use of POST to change the state of an
actuator, for example to toggle between its possible values. Plain text
or SenML media types can be used and returned for this interface cat-
egory. SenML can be also used to include multiple measurements in
the same representation. An example would be a list of recent actua-
tor values or a list of values to update. Listing 3.5 shows requests for
reading, setting and toggling an actuator (associated with an LED).

Listing 3.5 Requests to change an actuator.

Req: GET /a/1/led
Res: 2.05 Content (text/plain)
0
Req: PUT /a/1/led (text/plain)
1
Res: 2.04 Changed
Req: POST /a/1/led (text/plain)
Res: 2.04 Changed
Req: GET /a/1/led
Res: 2.05 Content (text/plain)
0

3.10 Data Formats: Media Types for Sensor
Markup Language

Connecting sensors to the internet is not new, and there have been
many protocols designed to facilitate the process. The SenML specifi-
cation [56] defines new media types to embed simple sensor informa-
tion in application protocols, such as HTTP and CoAP. The format was
designed so that processors with very limited capabilities could easily
encode a sensor measurement into the media type, while at the same
time a server parsing the data could relatively efficiently collect a large
number of sensor measurements. SenML is defined by a data model for
measurements and simple metadata about measurements and devices.
The data is structured as a single object (with attributes) that contains
an array of entries. Each entry is an object that has attributes, such as a
unique identifier for the sensor, the time the measurement was made,
and the current value. Serializations for this data model are defined for
JSON, XML and Efficient XML Interchange (EXI).

3.10 Data Formats: Media Types for Sensor Markup Language 139

This approach allows a server to efficiently parse large numbers
of measurements. SenML can be adopted to data flow models, data
feeds pushed from a sensor to a collector, and to the web resource
model, where the sensor is requested as a resource representation
(e.g., “GET/sensor/temperature”).

SenML strikes a balance between having some information
about the sensor carried with the sensor data so that the data is
self-describing but also making that a fairly minimal set of auxiliary
information, for efficiency reasons. Other information about the
sensor can be discovered by other methods such as using the CoRE
link format.

For example, Listing 3.6 shows a measurement from a tem-
perature gauge encoded in the JSON syntax. The array has a
single SenML record with a measurement for a sensor labelled as
“urn:dev:ow:10e2073a01080063” with a current value of 23.1∘ C.

Listing 3.6 Temperature measurement encoded in JSON.

[
{"n":"urn:dev:ow:10e2073a01080063","u":"Cel","v":23.1}

]

SenML is defined by a data model for measurements and simple
metadata about measurements and devices. The data is structured as a
single array containing a list of SenML records. Each record contains
fields such as an unique identifier for the sensor, the time, the mea-
surement, the unit the measurement is recorded in, and the current
value of the sensor. Serializations for this data model are defined for
JSON, CBOR, XML, and Efficient XML Interchange (EXI). SenML’s
main concepts and elements are:

• SenML record: One measurement or configuration instance in time
presented using the SenML data model.

• SenML pack: One or more SenML records in an array structure.
• SenML label: A short name used in SenML records to denote dif-

ferent SenML fields (e.g., “v” for “value”).
• SenML field: A component of a record that associates a value to a

SenML label for this record.

Each SenML pack carries a single array that represents a set of mea-
surements and/or parameters. This array contains a series of SenML

140 3 Interoperability

records with various fields, as described below. There are two kinds of
fields: base and regular. The base fields can be included in any SenML
record and they apply to the entries in the record. Each base field also
applies to all records after it, up to, but not including the next record
that has that same base field. All base fields are optional. Regular fields
can be included in any SenML record and apply only to that record.
Basic fields associated with SenML records are:

• Base name: A string prepended to the names found in the entries.
• Base time: A base time that is added to the time found in an entry.
• Base unit: A base unit that is assumed for all entries, unless other-

wise indicated. If a record does not contain a unit value, then the
base unit is used. Otherwise the value found in the unit (if any) is
used.

• Base Value: A base value is added to the value found in an entry,
similar to base time.

• Base sum: A base sum is added to the sum found in an entry, similar
to base time.

• Version: Version number of media type format. This field is an
optional positive integer and defaults to 5 if not present.

Regular fields are:

• Name: Name of the sensor or parameter. When appended to the
base n Name field, this must result in a globally unique identifier
for the resource. The name is optional if the base name is present. If
the name is missing, base name must uniquely identify the resource.
This can be used to represent a large array of measurements from
the same sensor without having to repeat its identifier on every mea-
surement.

• Unit: Units for a measurement value. Optional.
• Value: Value of the entry. Optional if a sum value is present,

otherwise required. Values are represented using basic data types.
This specification defines floating point numbers (“v” field for
value), Booleans (“vb” for Boolean value), strings (“vs” for string
value) and binary data (“vd” for data value). Exactly one value field
must appear unless there is sum field, in which case it is allowed to
have no value field.

• Sum: Integrated sum of the values over time. Optional. This field is
in the units specified in the unit value multiplied by seconds.

• Time: Time when value was recorded. Optional.

3.10 Data Formats: Media Types for Sensor Markup Language 141

Table 3.9 JSON SenML labels.

SenML Label JSON Type

Base name bn String
Base time bt Number
Base units bu String
Base balue bv Number
Base dum bs Number
Version bver Number
Name n String
Unit u String
Value v Number
String value vs String
Boolean value vb Boolean
Data value vd String
Value sum s Number
Time t Number
Update time ut Number
Link l String

• Update time: An optional time in seconds that represents the max-
imum time before this sensor will provide an updated reading for
a measurement. This can be used to detect the failure of sensors or
communications paths from them.

Table 3.9 shows the JSON representation (application/senml+json)
for SenML fields. The SenML labels are used as the JSON object
member names in JSON objects representing JSON SenML records.
Examples of SenML use are presented in Section 3.10.1.

3.10.1 JSON Representations

3.10.1.1 Single Datapoint
Listing 3.7 shows a temperature reading taken approximately “now”
by a one-wire sensor device that was assigned the unique one-wire
address of 10e2073a01080063.

142 3 Interoperability

Listing 3.7 Temperature reading from one-wire device at unspecified time.

[
{"n":"urn:dev:ow:10e2073a01080063","u":"Cel","v":23.1}

]

3.10.1.2 Multiple Datapoints
Listing 3.8 shows voltage and current “now” in the JSON representa-
tion; that is at an unspecified time.

Listing 3.8 Voltage and current measurements at unspecified time.

[
{"bn":"urn:dev:ow:10e2073a01080063:","n":"voltage",

"u":"V","v":120.1},
{"n":"current","u":"A","v":1.2}

]

Listing 3.9 is similar, but shows the current on Tuesday 9 June 2010
at 18:01:16.001 UTC and at each second for the previous 5 s.

Listing 3.9 Temperature readings at specified dates and times.

[
{"bn":"urn:dev:ow:10e2073a0108006:",
"bt":1.276020076001e+09,"bu":"A","bver":5,
"n":"voltage","u":"V","v":120.1},
{"n":"current","t":-5,"v":1.2},
{"n":"current","t":-4,"v":1.3},
{"n":"current","t":-3,"v":1.4},
{"n":"current","t":-2,"v":1.5},
{"n":"current","t":-1,"v":1.6},
{"n":"current","v":1.7}

]

3.10.1.3 Multiple Measurements
Listing 3.10 shows humidity measurements from a mobile device with
a one-wire address 10e2073a01080063, starting at Monday 31 October
2011 at 13:24:24 UTC. The device also provides position data, which
is provided in the same measurement or parameter array as separate
entries. Note that the time is used for correlating data that belongs
together, such as a measurement and a parameter associated with it.
Finally, the device also reports extra data about its battery status at a
separate time.

3.10 Data Formats: Media Types for Sensor Markup Language 143

Listing 3.10 Multiple humidity measurements.

[
{"bn":"urn:dev:ow:10e2073a01080063",
"bt":1.320067464e+09,"bu":"%RH","v":20},

{"u":"lon","v":24.30621},
{"u":"lat","v":60.07965},
{"t":60,"v":20.3},
{"u":"lon","t":60,"v":24.30622},
{"u":"lat","t":60,"v":60.07965},
{"t":120,"v":20.7},
{"u":"lon","t":120,"v":24.30623},
{"u":"lat","t":120,"v":60.07966},
{"u":"%EL","t":150,"v":98},
{"t":180,"v":21.2},
{"u":"lon","t":180,"v":24.30628},
{"u":"lat","t":180,"v":60.07967}

]

145

4

Discoverability

The IoT is envisioned to bring together billions of devices, or “smart
objects”, by connecting them in an Internet-like structure, allowing
them to communicate and exchange information and to enable new
forms of interaction among things and people. Smart objects are
typically equipped with a microcontroller, a radio interface for com-
munication, sensors and/or actuators. Smart objects are constrained
devices, with limited capabilities in terms of computational power
and memory. They are typically battery-powered, thus introducing
even more constraints on energy consumption: this motivates the
quest for energy-efficient technologies, communication/networking
protocols, and mechanisms. Internet Protocol (IP) has been widely
envisaged as the true IoT enabler, as it allows full interoperability
among heterogeneous objects. As part of the standardization process
that is taking place, new low-power protocols are being defined in
international organizations, such as the IETF and the IEEE.

4.1 Service and Resource Discovery

Together with application-layer protocols, suitable mechanisms for
service and resource discovery should be defined. In particular, CoAP
defines the term service discovery as the procedure used by a client to
learn about the endpoints exposed by a server. A service is discovered
by a client by learning the Uniform Resource Identifier (URI) [28]
that references a resource in the server namespace. Resource discov-
ery is related to the discovery of the resources offered by a CoAP
endpoint. In particular, M2M applications rely on this feature to keep
applications resilient to change, and therefore not requiring human

Internet of Things: Architectures, Protocols and Standards, First Edition.
Simone Cirani, Gianluigi Ferrari, Marco Picone, and Luca Veltri.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

146 4 Discoverability

intervention. A resource directory (RD) [14] is a network element
hosting the description of resources held on other servers, allowing
lookups to be performed for those resources.

A crucial issue for the robust applications, in terms of resilience
to changes that might occur over time (e.g., availability, mobility,
or resource description), and the feasible deployment of (billions
of) smart objects is the availability of mechanisms that minimize, if
not remove, the need for human intervention for the configuration
of newly deployed objects. The RESTful paradigm is intended to
promote software longevity and independent evolution [29], both
of which are extremely important for IoT and M2M applications
deployed on smart objects that are expected to stay operational
for long periods; say, years. Self-configuring service and resource
discovery mechanisms should take into account the different scopes
that these operations might have:
• in a local scope, they should enable communication between geo-

graphically concentrated smart objects; that is, residing in the same
network;

• in a global (large-scale) scope, they should enable communication
between smart objects residing in different (and perhaps geograph-
ically distant) networks.

These approaches should also be scalable, since the expected number
of deployed objects is going to be of the order of billions.

Self-configuration is another crucial feature for the diffusion of IoT
systems, where all the objects equipped with a radio interface are
potential sources of information to be interconnected. An external
operator managing a network first needs to configure the system.
Clearly, if this operation is carried out manually, there may be mis-
configurations. This is far more likely when thousands of devices are
involved. In addition, an occasional manual network reconfiguration
may cause a significant system outage, just as, in an industrial plant,
machines may need to be stopped for normal maintenance. For this
reason, a self-configurable IoT system is a good way to prevent long
outages and configuration errors.

4.2 Local and Large-scale Service Discovery

In the literature, there are already mechanisms for implementing ser-
vice discovery. Most of these, however, were originally conceived for

4.2 Local and Large-scale Service Discovery 147

LANs and were then extended for constrained IPv6 over low-power
wireless personal area networks (6LoWPANs). One of these mecha-
nisms is Universal Plug and Play (UPnP) [57], a protocol that allows for
automatic creation of a device-to-device network. However, as UPnP
uses TCP as the transport protocol and XML as the message exchange
format, it is not suited to constrained devices.

Another proposed mechanism is based on the Service Location
Protocol (SLP) [58, 59] through which computers and devices can
find services in LANs without prior configuration. Devices use SLP
to announce the services they provide in the local network; these are
grouped into scopes: simple strings that classify the services. The
use of SLP may be important in large-scale IoT scenarios, in order
to make service discovery automatic. However, SLP does not target
constrained devices like those used in the IoT. In addition, it relies
on centralized approaches, which may be prone to failure. Finally, up
to now, no SLP implementation has been available for Contiki-based
devices.

Another alternative to UPnP is the Zero-configuration (Zero-
conf) [60] networking protocol, which allows for automatic creation
of computer networks based on the TCP/IP Internet stack and does
not require any external configuration. Zeroconf implements three
main functionalities:

• automatic network address assignment;
• automatic distribution and resolution of host names;
• automatic location of network services.

Automatic network assignment intervenes when a node first con-
nects to the network. The host name distribution and resolution is
implemented using multicast DNS (mDNS) [61], a service that has
the same interfaces, packet formats, and semantics as standard DNS
messages to resolve host names in networks that do not include a local
name server. In the service discovery phase, Zeroconf implements
DNS-based Service Discovery (DNS-SD) [62]. Using standard DNS
queries, a client can discover, for a given domain, the named instances
of the service of interest.

In the field of ubiquitous computing, PIAX, a P2P platform for geo-
graphic service location, has been proposed [63, 64]. In PIAX, every
node is a peer of the overlay. This approach is not suitable for the IoT,
since many nodes are constrained in terms of processing capabilities.
In addition, PIAX does not provide a URI resolution service, so that it

148 4 Discoverability

can only try to route the query to the correct area of the network but
cannot resolve the endpoint to be contacted.

Efforts have been made to adapt these solutions to the world of con-
strained devices. Busnel et al. introduced a P2P overlay to perform
broadcast or anycast in wireless sensor networks (WSNs) without any
centralized element [65]. Sensors were clustered according to their
types into specific layers. However, they took into account neither local
service discovery nor computational complexity due to the existence
of nodes belonging to different layers.

Gutierrez et al. instead introduced a separation between WSNs
and P2P networks [66]. Their focus was on exploiting these two
types of network to develop a feedback loop to allow developers
to define self-managing behaviors. However, they did not take into
account aspects like energy efficiency, self-discovery of resources, or
large-scale deployments.

Leguay et al. implemented an automatic discovery mechanism [67].
In their approach each node is responsible for announcing itself to
the main gateway through HELLO messages. These messages are sent
either in response to a discovery request or proactively sent in an auto-
matic way. The gateway is then be in charge of addressing the requests
coming from external networks to the correct nodes.

Kovacevic et al. have proposed NanoSD, a lightweight service
discovery protocol designed for highly dynamic, mobile, and het-
erogeneous sensor networks [68]. Their solution requires extensive
multicast and broadcast messages to keep track of service information
of the neighboring nodes.

Another solution was presented by Mayer and Guinard [69]. They
developed a RESTFul web service using HTTP-based service discov-
ery. However, their approach does not provide management and status
maintenance of existing services.

Finally, Butt et al. divided the network into groups, assigning differ-
ent roles to the nodes in each group [70]. Embedding a directory agent
into the border router makes scalability easier. However, this architec-
ture tends to be too fragile in the presence of failures of the central
border router. In addition, the protocol focuses on in-network service
location, but it lacks coordination with other similar entities, thus pre-
venting large-scale discovery.

A few papers related to service discovery in IoT systems have
appeared. Jara et al. sketched an architecture for large-scale service
discovery and location [71]. However, theirs was a centralized solution,

4.2 Local and Large-scale Service Discovery 149

exposing a search engine to make the integration of distributed service
directories feasible.

Paganelli and Parlanti exploited an underlying distributed P2P
overlay to support more complex queries, such as multi-attribute
and range queries [72]. This approach is more focused on service
resolution rather than on the creation of the overlay by automatically
discovering existing services. Unlike our approach, which aims at
being transparent and agnostic of the underlying technology, several
P2P overlays presented in the literature focus on RFID for supply
chains [73–75].

CoAP natively provides a mechanism for service discovery and
location [7]. Each CoAP server must expose an interface /.well-
known/core, to which the RD or, more generally, a generic node can
send requests for discovering available resources. The CoAP server
will reply with the list of resources and, for each resource, an attribute
that specifies the format of the data associated with that resource.
CoAP, however, does not specify how a node joining the network for
the first time must behave in order to announce itself to the resource
directory node.

In the IETF’s latest draft for CoAP [76], this functionality is extended
to multicast communications. In particular, multicast resource discov-
ery can be useful when a client needs to locate a resource within a
limited scope, and that scope supports IP multicast. A GET request
to the appropriate multicast address is made for /.well-known/
core. Of course, multicast resource Discovery works only within an
IP multicast domain and does not scale to larger networks that do not
support end-to-end multicast. However, in CoAP there is no specifi-
cation on how a remote client can lookup the RD and query for the
resource of interest.

Peer-to-peer (P2P) networks have been designed to provide
some desirable features for large-scale systems, such as scalability,
fault-tolerance, and self-configuration. The main feature that makes
P2P networks appealing is the fact that as the number of participating
nodes increases, the overall system capacity (in terms of processing
and storage capabilities) increases as well. This challenges classical
client/server architectures, where an increase in the number of clients
may bring the system to saturation and/or failure. P2P networks
arrange participating nodes in an overlay network, built on top of an
existing network, such as the Internet. The algorithm through which
the overlay is created can be used to make a distinction between

150 4 Discoverability

structured and unstructured P2P networks. Structured P2P networks,
such as distributed hash tables (DHTs), are built using consistent
hashing algorithms, which guarantee that the routing of requests takes
a deterministic and upper-bounded number of hops for completion,
at the cost of having network traffic for managing and maintaining
the overlay. Historically, P2P networks have been associated with file
sharing applications, such as eMule1 and BitTorrent2. The decrease in
the popularity of file sharing applications has cooled interest in P2P,
even though notable applications, such as Skype, have historically
used a P2P overlay as backbone to provide a scalable and efficient
service. However, the features that P2P networks have been designed
for are very appealing for IoT scenarios, where large-scale and robust
applications need to be supported. IoT thus represents an opportunity
of a renaissance for P2P.

Centralized approaches for service discovery, such as the RD of the
CoAP protocol, suffer from scalability and availability limitations and
are prone to attacks, such as denial of service (DoS). Possible alterna-
tives to this problem may consist of the use of DHTs. Key/value pairs
are stored in a DHT and any participating node can efficiently retrieve
the value associated with a given key. Responsibility for maintaining
the mapping from keys to values is distributed among the nodes in
such a way that a change in the set of participants causes a minimal
amount of disruption (consistent hashing). This allows a DHT to scale
to extremely large numbers of nodes and to handle continuous node
arrivals, departures, and failures.

Several different algorithms and protocols have already been
proposed for DHTs; the most significant are Chord [77] (for its
simplicity) and Kademlia [78] (for its efficiency). Some papers have
also been published on the use of P2P for service discovery. Yulin et al.
combine P2P technology and the centralized Universal Description
Discovery and Integration (UDDI) technology to provide a flexible
and reliable service discovery approach [79]. Kaffille et al. apply the
concepts of DHTs to the service discovery, creating an overlay P2P
to exchange information about available services without flooding
the entire network [80]. However, these approaches do not take into
account the constraints and requirements of IoT. In Section 4.3, we
will detail our P2P implementation for large-scale service/resource
discovery in IoT networks, extending the P2P DHT solution by taking

1 http://www.emule-project.net/.
2 http://www.bittorrent.com/.

4.2 Local and Large-scale Service Discovery 151

into account the requirements of scalability and self-configuration
typical of constrained networks.

4.2.1 ZeroConf

ZeroConf is an open standard originally designed by Apple. It allows
services to be setup automatically within a network, without requiring
manual configuration. The IETF Zeroconf Working Group was formed
in 1999 and has worked on the definitions and the standardization
mechanisms required to achieve zero configuration of services.

ZeroConf is based on the combination of three functionalities:
address selection, service name resolution, and service discovery.
These functions are provided by the following suite of standards,
respectively:

• IPv4 link-local addressing [81]: this standard allows hosts to
self-assign IP addresses in a network without relying on a DHCP
server;

• Multicast DNS [82]: this standard provides a way to resolve names
to IP addresses without relying on a DNS server;

• DNS service discovery (DNS-SD) [83]: this standard allows discov-
ery of services within a network using the semantics of DNS mes-
sages.

The ZeroConf suite allows services to be configured and discovered
without requiring DHCP and DNS servers. It does this by making all
hosts collectively responsible for publishing/discovering services and
resolving names to addresses, simply by using the semantics of the
DNS protocol and multicast communication.

ZeroConf supports both IPv4 and IPv6, using multicast IP addresses
224.0.0.251 and ff02::fb and UDP ports 53 and 5353, respectively.

Service discovery typically occurs by searching for services of a given
type in a particular domain; that is, matching the service type string
of the form _ServiceName._ServiceType._TransportProtocolName.
Domain. (for example, _http._tcp.local. or _coap._udp.local.) The
service discovery process returns a list of services that comply with
the searched type. Subsequently, a service with a given name can be
resolved to an IP address and port number at which it can be accessed.
In the case of a CoAP server, once discovered, a request can be issued
to the server for its /.well-known/core in order to perform resource
discovery.

152 4 Discoverability

Several implementations of ZeroConf are available, in essence for all
platforms. Due to this widespread support, ZeroConf is a very good
option for IoT smart objects that want to advertise their presence and
allow other applications to discover them automatically with no man-
ual configuration.

The limitation of ZeroConf is its reliance on multicast communica-
tion, which is rarely propagated beyond the scope of the local network,
making ZeroConf typically suitable only for local environments. How-
ever, locally, ZeroConf provides an extremely convenient and elegant
way to perform service discovery and can thus be adopted to deploy
self-configuring IoT applications.

4.2.2 UPnP

With a similar intent to ZeroConf, the Universal Plug and Play (UPnP)
protocol suite provides a way to perform dynamic and seamless
discovery of devices in a network, without relying on DHCP and
DNS servers. UPnP has been defined by the UPnP Forum and uses
HTTPU/HTTPMU (HTTP over UDP and HTTP over multicast UDP)
and SOAP to perform service description, discovery, and data transfer.
UPnP suits home appliances rather than enterprise-level deployments
due to its security and efficiency issues. Many consumer-oriented
smart objects, such as Philips Hue light bulbs, use UPnP as a
zero-configuration service discovery mechanism for bridges.

4.2.3 URI Beacons and the Physical Web

The Physical Web, a concept promoted by Google, is a different
approach to provide seamless discovery and interaction with smart
objects. The assumption behind the Physical Web is that the web
itself provides all the necessary means for a fruitful interaction with
any endpoint, be that a website or an object. As a consequence, the
only operation that is needed in order to merge the physical world
and the web is to discover the URL related to a web resource linked
to a smart object. After that, a web browser is capable of delivering a
user interface to the end user, which they can use to interact with the
object (mediated by a backend that is actually connected to the object
itself).

The discovery mechanism defined by the Physical Web (and
illustrated in Figure 4.1) is based on the use of URI beacons; that is,

URI Beacon

URL broadcast

Physical Web detects

beacons and presents

them to user

URL 1

URL 2

URL 3

Object can be

controlled

Web Content

Mobile App

Upon

click, user

is directed

to

Interactive Website

1

2

3

4

Figure 4.1 Physical Web discovery mechanism.

154 4 Discoverability

Bluetooth Low Energy (BLE) devices broadcasting URLs. The use of
BLE is particularly convenient because it is supported on the vast
majority of user devices as well as having low energy consumption,
which is important in order to ensure that battery-powered beacons
can last as long as possible. The standard for data broadcasting over
BLE is the Eddystone protocol, designed by Google. The Eddystone
protocol defines four packet types:

• Eddystone-UID, used to contain a beacon identifier;
• Eddystone-URL, used to broadcast a URL;
• Eddystone-TLM, used for sending telemetry information
• Eddystone-EID, used for carrying ephemeral IDs, in order to protect

against replay attacks or spoofing.

Although BLE is currently the only communication protocol that can
be used to broadcast a URL, other options, such as mDNS or UPnP,
can still be applied and might be supported in the future.

The advantage in using URI beacons is the possibility to discover
and interact with objects even if the user device is not connected to
the same network. However, this benefit may also become a downside,
because the interaction with the object might not take into account
context information related to the association of the user device with
the network. Moreover, it may be unsafe in some scenarios to openly
broadcast object URLs: it might raise security issues and it could be
impossible to restrict discovery to only authorized devices. The Phys-
ical Web is therefore particularly suited to public spaces, where no
restricted access to objects should occur.

4.3 Scalable and Self-configuring Architecture
for Service Discovery in the IoT

In this section, we present a scalable and self-configuring architec-
ture for service and resource discovery in the IoT. aiming at provid-
ing mechanisms requiring no human intervention for configuration,
thus simplifying the deployment of IoT applications. Our approach is
based on:

• at a large scale, P2P technologies, to provide a distributed large-scale
service discovery infrastructure;

• at a local scale, zero-configuration mechanisms.

4.3 Scalable and Self-configuring Architecture for Service Discovery in the IoT 155

Information on resources provided by smart objects attached to a local
wireless network are gathered by a special boundary node, referred to
as the “IoT gateway”. This is also part of a P2P overlay used to store
and retrieve such information, resulting into a distributed and scal-
able RD. As will be shown, the global service discovery performance
depends only on the number of peers in the P2P overlay; this makes
the proposed approach directly scalable when the size of the IoT net-
work increases. Local service discovery at the IoT gateway makes the
process of discovery of new resources automatic. In particular, in our
experimental tests we use CoAP for the description of the available
endpoints.

To the best of our knowledge, this is the first research to provide an
architecture and mechanisms that allow for service discovery at both
global and local scales into a unique self-configuring system. We also
provide some preliminary results obtained by an implementation and
a real-world deployment of our architecture, thus demonstrating its
feasibility.

We note that the proposed architecture is built upon components
designed to be absolutely agnostic regarding the format of service
and resource descriptors, in order to avoid the introduction of
application-specific constraints. In fact, the architecture provides
mechanisms for publishing and retrieving information, mapped to
service or RD URIs, which can be represented in any suitable content
format for service/resource description, either already available,
such as the CoRE Link Format [13], or foreseeable. The adoption of
standard description formats is mandatory to guarantee maximum
interoperability, but it is a service’s responsibility to enforce this
practice. It is also important to note that IoT applications should be
implemented according to the REST paradigm; the definition of CoAP
is intended to accomplish precisely this. Client applications, in order
to comply with the RESTful paradigm, must follow the HATEOAS
(Hypermedia as the Engine of Application State) principle [2], which
forbids applications from driving interactions that are based on
out-of-band information rather than on hypermedia. The existence
of prerequisites, in terms of resource representations, is a violation of
the REST paradigm. The service discovery architecture itself does not
do this: it is extremely flexible, able to handle any resource description
format. The absence of content-related dependencies leads to more
robust implementations, in terms of longevity and adaptability to
changes that resource descriptions might undergo.

156 4 Discoverability

4.3.1 IoT Gateway

The service discovery architecture proposed in this work relies on the
presence of an IoT gateway. By combining different functions, the
IoT gateway provides both IoT nodes and standard (non-constrained)
nodes with service and resource discovery, proxying, and (optionally)
caching and access-control functionalities. In this section, the internal
architecture of the IoT gateway and its associated functions will be
detailed.

4.3.1.1 Proxy Functionality
The IoT gateway interacts, at the application level, with other IoT
nodes through CoAP and may act as both CoAP client and CoAP
server. More precisely, in the terms of the CoAP specifications, it
may act as CoAP origin server and/or proxy. The CoAP specification
defines an origin server as a CoAP server on which a given resource
resides or has to be created, while a proxy is a CoAP endpoint which,
by implementing both the server and client sides of CoAP, forwards
requests to an origin server and relays back the received responses.
The proxy may also (optionally) perform caching and protocol
translation (in which case it is termed a “cross-proxy”).

IoT Network

P

CoAP HTTP

UDP

IP

RD Cache

802.15.4
802.15.4

802.11 802.11

TCP

Figure 4.2 Architecture of IoT gateway with internal layers and caching/resource
directory capabilities.

4.3 Scalable and Self-configuring Architecture for Service Discovery in the IoT 157

The presence of a proxy at the border of an IoT network can be very
useful for a number of reasons:

• to protect the constrained network from the outside: for security
reasons such as DoS attacks;

• to integrate with the existing web through legacy HTTP clients;
• to ensure high availability of resources through caching;
• to reduce network load of constrained devices;
• to support data formats that might not be suitable for constrained

applications, such as XML.

In Figure 4.2, a layered view of the IoT gateway node is presented.
In addition to standard CoAP proxying behavior, the IoT gateway

may also act as an HTTP-to-CoAP proxy by translating HTTP
requests to CoAP requests (and vice-versa). Just like standard CoAP
proxying, an HTTP-to-CoAP proxy can integrate two different
operational modes:

• reverse proxy: by translating incoming HTTP requests to CoAP
requests, it provides access to resources that are created and stored
by CoAP nodes within the IoT network (acting as CoAP servers);

• origin server: acting as both HTTP and CoAP server, by letting
CoAP nodes residing in the IoT network (and acting as clients)
create resources through CoAP POST/PUT requests, and by
making such resources available to other nodes through HTTP and
CoAP.

The latter operational mode is particularly suited for duty-cycled IoT
nodes, which may post resources only during short wake-up intervals.
Figure 4.3 shows the difference between a reverse proxy and an origin
server.

From an architectural point of view, the IoT gateway comprises the
following elements:

• an IP gateway, managing IPv4/IPv6 connectivity among smart
objects in heterogeneous networks (i.e., IEEE 802.15.4, IEEE
802.11.x, and IEEE 802.3) so as to allow for interconnection of
devices operating in different networks by providing an IP layer to
let nodes communicate seamlessly;

• a CoAP origin server, which can be used by CoAP clients within the
network to post resources that will be maintained by the server on
their behalf;

158 4 Discoverability

CoAP

GET/temp

CoAP

2.05 Content

HTTP

GET/temp

{value=20, unit=C}

HTTP

200 OK {value=20, unit=C}

CoAP

Server
HTTP

Client

MjCoAP

HTTP-CoAP

Proxy

acting as

Reverse

Proxy

(a)

CoAP

POST/temp

CoAP

2.01 Created

HTTP
GET/temp

HTTP
404 Not Found

{value=20, unit=C}

HTTP

200 OK

HTTP

GET/temp

{value=20, unit=C}

CoAP

Client

MjCoAP

HTTP-CoAP

Proxy

acting as

Origin

Server

HTTP

Client

HTTP

Client

(b)

Figure 4.3 HTTP-to-CoAP proxy acting as: (a) reverse proxy and (b) origin server.

• a HTTP-to-CoAP reverse proxy, optionally equipped with caching
capabilities, which can be used for accessing services and resources
that are available in an internal constrained network.

The IoT gateway is therefore a network element that coordinates and
enables full and seamless interoperability among highly heterogeneous
devices, which:

• may operate different protocols at the link and/or application layers;
• may not be aware of the true nature of the nodes providing services

and resources;
• may be geographically distant.

4.3.1.2 Service and Resource Discovery
Service discovery aims at obtaining the hostport of the CoAP servers
in the network, while resource discovery is discovery of the resources
that a CoAP server manages. Because of its role in managing the

4.3 Scalable and Self-configuring Architecture for Service Discovery in the IoT 159

life-cycle of nodes residing in its network, the IoT gateway is naturally
aware of the presence of the nodes and the available services and
resources. When the IoT gateway detects that a CoAP node has joined
its IP network, it can query the CoAP node, asking for the list of
provided services; in CoAP this is done by sending a GET request to
the /.well-known/core URI. Such information (the resource directory)
is then locally maintained by the IoT gateway and successively used
to route incoming requests to the proper resource node. According
to this mechanism, the IoT gateway may act as an RD for the CoAP
nodes within the network.

In Section 4.3.2, we detail how IoT gateways can be federated in a
P2P overlay in order to provide a distributed and global service and
resource directory that can be used to discover services at a global
scale. In Section 4.3.3, we then provide a zero-configuration solution
for discovery of resources and services within a local scope, with no
prior knowledge or intervention required on any node of the network.
This allows the IoT gateways to populate and update their resource and
service directories.

4.3.2 A P2P-based Large-scale Service Discovery
Architecture

As stated in Section 4.3.1, IoT gateways can be federated in a P2P over-
lay in order to provide a large-scale service discovery mechanism. The
use of a P2P overlay can provide several desirable features:

• scalability: P2P systems are typically designed to scale and increase
their capacity as the number of participants increases;

• high-availability: P2P systems are inherently robust because they
have no single point of failure and the failure of a node does not
compromise the overall availability of the services and resources
provided;

• self-configuration: P2P systems provide mechanisms to let the
overlay re-organize itself automatically when nodes join and leave,
requiring no direct intervention for configuration.

These features fit perfectly in IoT scenarios, where billions of objects
are expected to be deployed. Among several approaches to imple-
menting P2P overlays, structured overlays, such as DHTs, have
some interesting features, including efficient storage and lookup
procedures, resulting in deterministic behavior. On the contrary, with

160 4 Discoverability

unstructured overlays, flooding techniques are used for message
routing. In the remainder of this section, we propose a P2P-based
approach that provides a scalable and self-configuring architecture
for service discovery at a global scale.

IoT gateways are organized as peers of a structured P2P overlay,
which provides for efficient name resolution for CoAP services. The
large-scale service discovery architecture presented in this work relies
on two P2P overlays:

• the Distributed Location Service (DLS) [84]
• the Distributed Geographic Table (DGT) [85, 86].

The DLS provides a name resolution service to retrieve all the
information needed to access a resource (of any kind) identified by
a URI. The DGT builds up a distributed geographical knowledge,
based on the location of nodes, which can be used to retrieve a list
of resources matching geographic criteria. The combination of these
two P2P overlay systems allows for the building of a distributed
architecture for large-scale service discovery, with the typical features
of P2P networks (scalability, robustness, and self-configuration), yet
enabling the unique feature of service and resource discovery on a
geographical basis. In the following, we first detail the DLS and DGT
and then we describe the overall envisioned system architecture.

4.3.2.1 Distributed Location Service
The DLS is a DHT-based architecture that provides a name resolu-
tion service based on storage and retrieval of bindings between a URI,
identifying resources (e.g., web services) and the information that indi-
cates how they can be accessed [84]. In essence, the DLS implements
a location service that can be used to store and retrieve information
for accessing services and resources. Together with each contact URI,
other information can be stored, such as the expiration time, an access
priority value, and, optionally, a human-readable text (e.g., a contact
description or a name).

The service provided by DLS can be considered as similar to that of
the DNS, since it can be used to resolve a name to retrieve the infor-
mation needed to access the content related to that name. However,
the DNS has many limitations that the DLS overcomes, such as:

• the DNS applies only to the fully qualified domain names (FQDN)
and not to the entire URI;

4.3 Scalable and Self-configuring Architecture for Service Discovery in the IoT 161

• the DNS typically has long propagation times (further increased by
the use of caching), which are not suited to highly dynamic scenar-
ios, such as those encompassing node mobility;

• the DNS essentially provides the resolution of a name, which results
in an IP address, but it does not allow for storage and retrieval of
additional useful information related to the resolved URI, such as
the description and the parameters of the hosted service.

Another important feature that makes the use of the DLS preferable to
the DNS is its robustness. If a DNS server is unreachable, then resolu-
tion cannot be performed. In contrast, P2P overlays do not have single
point of failure that might cause service disruption, resulting in a more
robust, dynamic, and scalable solution.

A DLS can be logically accessed through two simple methods:

• put(key,value);
• get(key);

where key is a resource URI (actually its hash), while value is struc-
tured information that may include location information (e.g. a con-
tact URI) together with a display name, expiration time, priority value,
etc. The get(key) method should return the set of the corresponding
values (actually the contact information) associated with the targeted
resource. The removal of a resource is performed by updating an exist-
ing resource through a put operation with expiration time set to zero.
This mapping allows the approach to support:

• mobility: it is sufficient to put and replace an old resource with an
updated one that considers the new position of the resource;

• replication: it is sufficient to execute several put operations for the
same resource in order to have multiple replicas diffused in the
DHT.

The DLS interface can be easily integrated with existing networked
applications, such as a middleware layer offering services to applica-
tions and working on top of standard transport protocols. Different
RPC protocols, such as dSIP [87] and RELOAD [88], may be used
for messaging, regardless of the actual selected DHT algorithm (e.g.,
Chord or Kademlia).

4.3.2.2 Distributed Geographic Table
The DGT [85, 86] is a structured overlay scheme, built directly using
the geographical location of the nodes. Unlike DHTs, with a DGT each

162 4 Discoverability

participant can efficiently retrieve node or resource information (data
or services) located near any chosen geographic position. In such a sys-
tem, the responsibility for maintaining information about the position
of active peers is distributed among nodes, so that a change in the set
of participants causes a minimal amount of disruption.

The DGT is different from other P2P-based localization systems,
where geographic information is routed, stored, and retrieved among
nodes organized according to a structured overlay scheme. The DGT
principle is to build the overlay by directly taking into account the geo-
graphic positions of nodes. This allows for building of a network in
which overlay neighbors are also geographic neighbors; no additional
messages are needed to identify the closest neighbors of a peer. The
main difference between the DGT and the DHT-based P2P overlays
is the fact that the DGT overlay is structured in such a way that the
messages are routed exclusively according to the geographic locations
of the nodes, rather than on keys that have been assigned to the nodes.
Typically, DHTs arrange hosts at unpredictable and unrelated points in
the overlay, deriving keys through hashing functions. In contrast, the
DGT ensures that hosts that are geographically close are also neigh-
bors in the overlay.

The DGT provides a primitive get(lat, lon, rad), which returns a list
of nodes that fall inside the circular region centered at (lat, lon) with
radius rad. Each node that provides a service can be looked up. The
get primitive is used to localize the list of nodes in a certain geographic
region. It might be possible to extend the get primitive by introducing
query filters, making it possible to return only matching services. The
DGT does not provide a generic put primitive that can be invoked on
the overlay as a whole. However, it is possible to extend the classical
DGT behavior with a generic put primitive, consisting of the detection
of a list of peers in a given area (through the native DGT get primi-
tive) and, subsequently, to invoke a put method directly on each of the
detected peers.

4.3.2.3 An Architecture for Large-scale Service Discovery based
on Peer-to-peer Technologies
The mechanisms presented in the previous subsections are the
key ingredients of a large-scale service discovery architecture. In
Figure 4.4, an illustrative representation of the system architecture is
shown. Several IoT gateways managing their respective networks are
interconnected through the two P2P overlays. Each IoT gateway is,

4.3 Scalable and Self-configuring Architecture for Service Discovery in the IoT 163

IoT Network 1 IoT Network 4

IoT Network 2 IoT Network 3

Distributed

Geographic

Table

Distributed

Location

Service

GW1

GW2 GW3

GW4

Figure 4.4 Large-scale service-discovery architecture. IoT gateway nodes act as
peers of two different P2P overlays. The DLS overlay is used for discovering
resources and services: a “white-pages” service that provides a name resolution
service to be used to retrieve the information needed to access a resource. The
DGT is used as a “yellow-pages” service, for learning about the existence of IoT
gateway nodes in a certain geographical neighborhood.

at the same time, a DLS peer and a DGT peer. The data structures of
the overlays are separated, since they pertain to different operations
of the overall architecture. The DLS and DGT overlays are loosely
coupled. The IoT gateway uses the DLS to publish/lookup the details
of resources and services, and the DGT to publish its presence or dis-
cover existing IoT gateways in a given geographic area. This separation
allows the IoT gateway to access the services provided by each overlay
as a “black-box”, without any risk of direct interference between
the overlays. The IoT gateway is responsible for implementing the
behavior required by the service discovery architecture.

The lifecycle of an IoT gateway is shown in Figure 4.5 and can be
described as follows:

• Upon start up, the IoT gateway joins the DLS and DGT overlays.
• The IoT gateway publishes its presence in the DGT by issuing a

DGT.put (lat, lon, URIGW) request.
• When the IoT gateway detects a new CoAP node in the network,

through any suitable means (e.g., Zeroconf), it fetches the node’s

164 4 Discoverability

IoT Network
GW

LRDA

A
B

Get /.well-known/core

DGT.put(lat,lon,URI)

DLS.put(URIGW/.well-known/nodes,LNDP)

DLS.put(URIGW/.well-known/core,LRDP)

DLS.put(URIA/.well-known/core,LRDA*)

DGT

DLS

2a

4

3a

3a

1

2b

POST

Figure 4.5 Messages exchanged when a new node joins the network. First, the
IoT gateway discovers the resources of a new CoAP server or stores them on
behalf of a CoAP client. Finally, DGT and DLS are updated with information about
the new node.

local resource directory (LRD) through a CoAP GET request tar-
geting the /.well-known/core URI. The LRD is filled with documents
in JSON-WSP3 or similar formats (such as CoRE Link Format) con-
taining the description of all the resources that are hosted by the
CoAP node and the information to be used to access them. At this
point, the resources included in the fetched node’s LRD are added
to the IoT gateway’s LRD.

• If the IoT gateway is willing to let the resources be reachable through
it, it will modify its LRD to include the references of the URLs to be
used to reach the resources through the IoT gateway, obtaining a
new LRD, denoted as LRD*; the IoT gateway could also delete from
the LRD all the references directly related to this resource, in order
to avoid having a resource that could be accessed without the IoT
gateway relaying messages.

• The IoT gateway publishes the LRD* in the DLS through a
DLS.put(URInode/.well-known/core,LRD*) request.

• The IoT gateway keeps track of the list of nodes that are in its man-
aged network, by adding the node to a local node directory (LND).

• The IoT gateway publishes the LND pair in the DLS through a
DLS.put(URIGW /.well-known/nodes,LND) request.

3 JavaScript Object Notation Web-Service Protocol (JSON-WSP) is a web-service
protocol that uses JSON for service description, requests, and responses. It has been
designed to cope with the lack of service description specification with documentation
in JSON-RPC, a remote procedure call protocol in JSON format.

4.3 Scalable and Self-configuring Architecture for Service Discovery in the IoT 165

• If, in addition, the IoT gateway acts as origin server, it stores its own
resources, which will then be published as soon as it receives CoAP
POST requests from CoAP clients residing in the inner network.

Steps 3 to 7 are repeated for each CoAP node detected in the network.
By publishing all the LRDs in the DLS, a distributed resource direc-
tory (DRD) is obtained. The DRD provides global knowledge of all the
available resources. The use of LNDs provides a census of all the nodes
that are within a certain network. Location information is managed
with JSON-WSP or CoRE Link Format documents, which provide all
the details related to parameters and return values. This is similar to
WSDL documents, but in a more compact, yet just as descriptive, for-
mat than XML. As soon as a node joins a local network and discovers
the presence of an IoT gateway (it can be assumed that either the IoT
gateway address is hard-coded or the node joins the RPL tree, find-
ing the IoT gateway – other mechanisms may also be possible), the
node announces its presence. We note that this phase is optional, in the
sense that other discovery mechanisms can be adopted. When the IoT
gateway detects this advertisement, it issues a GET /.well-known/core
to the node, in order to discover its available resources. The node, in
return, replies by sending a JSON-WSP or CoRE Link Format docu-
ment describing its exposed resources, the URI to access them, and
their data format. Finally, the IoT gateway will parse this response and
will populate the DLS and DGT accordingly. If other IoT gateways
are present within a certain network, they can act as additional access
points for a resource: this can be achieved by publishing a LRD*′ con-
taining the URLs related to them. This will lead to highly available and
robust routing in very dynamic scenarios where IoT gateways join and
leave the network. Should one want to provide fault-tolerance, infor-
mation replication mechanisms can be also introduced [89].

In the proposed architecture, the DLS can be interpreted as a
“white-pages” service to resolve the name of a service, in the form of a
URI, to get all the information needed to access it. Similarly, the DGT
can be interpreted as a “yellow-pages” service, used to retrieve a list
of available services matching geographic location criteria; that is, in
the proximity of a geographic position. Note that the DGT is just one
possible solution to get matching services; other mechanisms might
be adopted. These might not be related to geographic locations, but
instead on different matching criteria, such as taxonomies/semantics.

166 4 Discoverability

This is the case if the search is by type of service rather than by
geographical location.

The distinction between the lookup services provided by DLS and
DGT avoids the inclusion, in the URI, of service or resource informa-
tion that can dynamically change (such as the location), thus making it
possible to support mobility of services and resources. The DGT and
the DLS run in parallel, and the IoT gateways of a IoT sub-network
act as peers of both the DLS and the DGT. The resulting architecture
is very flexible and scalable: nodes that may join and leave the net-
work at any time. In fact, as explained in the previous subsections, the
nature of DLS and DGT P2P overlay networks allows new IoT gate-
ways to be added without requiring the re-computation of the entire
hash table. Vice versa, only the nodes responsible for maintaining the
resources close to the joining node must update their hash tables in
order to include the resources of the new node.

A client needing to retrieve data from a resource and with no infor-
mation about the URI to contact, must perform the operations shown
in Figure 4.6. It can perform service discovery through the mediation
of a known IoT gateway that is part of the DLS and DGT overlays. The
procedure can be detailed as follows (the first five steps are explicitly
shown in Figure 4.6):

1) The client contacts a known IoT gateway in order to access the
DLS and DGT overlays for service discovery.

CoAP/HTTP Request

4
3a

2

1

C

GW1
GW2

3b

CoAP GET URlGW2/.well-known/core
DGT.get(lat,lon,rad)

DLS.get(URIGW1/.well-known/nodes)

DGT

DLS

Figure 4.6 Data retrieval operations: 1) the client C contacts a known IoT gateway
GW1; 2) GW1 accesses the DGT to retrieve the list of IoT gateways available in a
given area; 3a) GW1 selects one of these IoT gateways, namely GW2; 3b) GW1
discovers the nodes managed by the GW2 through the DLS or directly by
contacting GW2; 4) finally, GW1 queries the node, associated with the resource of
interest, managed by GW2.

4.3 Scalable and Self-configuring Architecture for Service Discovery in the IoT 167

2) The client uses the DGT to retrieve a list of IoT gateways that are
in the surroundings of a certain geographical location through a
DGT.get(lat, lon, rad) request.

3a) The IoT gateway selects one of the IoT gateways returned by
the DGT and discovers the list of its managed nodes, through a
DLS.get(URIGW 1/.well-known/nodes) request.

3b) The IoT gateway discovers the resources that are reachable:
• by executing a DLS.get(URInode/.well-known/core) procedure or
• by issuing a CoAP GET request for URIGW 2/.well-known/core.

4) The IoT gateway interacts with the resource by issuing CoAP
or HTTP requests targeting the selected resource through the
appropriate IoT gateway. The client can then contact the URI of
the resource, either directly through CoAP (if supported by the
IoT gateway) or by HTTP (by delegating to the IoT gateway the
HTTP-CoAP request translation).

5) Once the command has been transmitted to the CoAP server, the
latter will reply with the requested data.

6) If supported, the response will be through CoAP to the client.
Otherwise, the IoT gateway will be in charge of response trans-
lation.

4.3.3 Zeroconf-based Local Service Discovery
for Constrained Environments

Service discovery within a local network can be performed using sev-
eral mechanisms. In scenarios where a huge number of devices are
involved or external human intervention is complicated, it is desirable
that all devices can automatically adapt to the surrounding environ-
ment. The same considerations apply to devices that do not reside in a
particular environment but are characterized by mobility, for example
smartphones. In both cases, a service discovery mechanism, which
requires no prior knowledge of the environment, is preferable. In this
section, we propose a novel lightweight Zeroconf-based mechanism
for service and resource discovery within local networks.

4.3.3.1 Architecture
Our local service discovery mechanism is based on the Zeroconf pro-
tocol suite. It involves the following elements:
• IoT nodes (smart objects) belonging to an IoT network;
• an IoT gateway, which manages the IoT network and acts as the RD;
• client nodes, which are interested in consuming the services offered

by the IoT nodes.

168 4 Discoverability

We assume that IP multicast is supported within the local network
and that DHCP [90] provides the dynamic configuration for the IP
layer.

4.3.3.2 Service Discovery Protocol
There are essentially two relevant scenarios for the application of the
proposed service discovery protocol:

• a new device offering some service is added to the network and
starts participating actively;

• a client, which is interested in consuming the services offered by
the nodes already present in the network, discovers the available
services.

In the former scenario, the procedure for adding a new service to the
network can be performed in two different ways, depending whether:

• the smart object can be queried for its services (using the
/.well-known/core URI); or

• it posts the information related to the services it is offering on the
IoT gateway, which acts as a resource directory.

The difference between the two scenarios also involves the charac-
terization of the smart object as a CoAP server or as a CoAP client,
respectively. If the device acts as a CoAP (origin) server, the service
discovery procedure, as shown in Figure 4.7, is the following:

1) The IoT node joins the network and announces its presence by
disseminating a mDNS message for a new service type _coap._
udp.local.

2) The IoT gateway, listening for events related to service type
_coap._udp.local., detects that a new node has joined the network.

3) The IoT gateway queries the new node for its provided services by
sending a CoAP GET request targeting the URI /.well-known/core.

4) The IoT node replies with a JSON-WSP or CoRE Link Format doc-
ument describing the offered services.

5) The IoT gateway updates the list of services that it manages on
behalf of the constrained nodes residing in the network, thus mak-
ing these services consumable by clients residing outside of the IoT
network (e.g., remote Internet hosts, which may be unaware of the
constrained nature of the network where the service of interest is
located).

4.3 Scalable and Self-configuring Architecture for Service Discovery in the IoT 169

Advertises
_coap._udp.local.

Detects
_coap._udp.local.

GET /.well-known/core

Local network

Local network

Service Descriptor

MjCoAP

HTTP-CoAP

Proxy

performing

Service

Discovery

CoAP

Server

Figure 4.7 Service advertisement by CoAP server detected by HTTP-to-CoAP
proxy.

CoAP

Node

Advertises
_httpcoap._udp.local.

Detects
_httpcoap._udp.local.

GET /.well-known/core

Local network

Local network

Service Descriptor

Proxy IP & Port

MjCoAP

HTTP-CoAP

Proxy

performing

Service

Advertisement

Figure 4.8 Service advertisement by HTTP-to-CoAP proxy detected by CoAP
client.

If the device acts as a CoAP client, on the other hand, the service
discovery procedure, as shown in Figure 4.8, is the following:

1) The proxy, which is a module of the IoT gateway, announces its
presence periodically, by disseminating a mDNS message for a new
service type _httpcoap._udp.local.

170 4 Discoverability

2) The joining smart object, which is listening for events related to the
service type advertised by the IoT gateway (_httpcoap._udp.local.),
detects that an IoT gateway is available in the network.

3) The smart object sends a CoAP GET request to the URI /.well-
known/core to get a description of the services that the IoT gate-
way provides and other information that might be used to detect
the most suitable proxy for the client.

4) The IoT gateway replies with a JSON-WSP or CoRE Link Format
document describing the services it provides.

5) The smart object processes the payload and then sends a CoAP
POST/PUT request to the IoT gateway to store resources to be
made available to external clients.

In this scenario, the IoT gateway does not simply forward incoming
requests and relay responses, but it acts as a server both towards
• the generator of the resource (CoAP client) from which it receives

CoAP POST requests;
• external clients, to which it appears as the legitimate origin server,

since the generator of the data is not a CoAP server.
When a client needs to discover the available services, the procedure

comprises the following steps:
1) The client sends a CoAP or HTTP request to the proxy targeting

the URI /.well-known/core.
2) The proxy replies with a JSON-WSP or CoRE Link Format docu-

ment describing all the services managed on behalf of the nodes;
3) The client then uses the received information to perform subse-

quent CoAP or HTTP requests in order to consume the required
services.

The use of IP multicast (i.e., mDNS) has the chief advantage of avoid-
ing having to set a priori the actual network address of any device
present, thus eliminating the need for any configuration.

4.3.4 Implementation Results

The solutions presented Sections 4.3.1–4.3.3 may be used for many
large IoT scenarios in which scalable and reliable service and resource
discovery is required. In particular, we focus on a smart-infrastructure
surveillance scenario, where given areas of interest can be moni-
tored by means of wireless devices. Each device (smart object) is
characterized by the type of the collected data and by its position.

4.3 Scalable and Self-configuring Architecture for Service Discovery in the IoT 171

A system user may then be interested either in directly contacting
a given resource (e.g., a sensor) or having the list of all available
resources in a given area. Such wireless sensors are grouped in low-
power wireless networks with one or more gateways acting as
interfaces between the resulting constrained wireless network and
the rest of the network (namely, in the considered scenario, the
Internet).

In order to validate the feasibility of the proposed solution and to
evaluate its performance, extensive experimentation has been carried
out in the reference smart-infrastructure surveillance scenario. The
performance evaluation focuses on both local and large-scale service
discovery mechanisms, as described in Sections 4.3.2 and 4.3.3,
respectively.

4.3.4.1 Local Service Discovery
The first phase of the experimental performance analysis focuses on
the discovery of new CoAP services (associated with constrained
devices) available in the local network.

The performance evaluation of our Zeroconf-based local service dis-
covery strategy was conducted using Zolertia Z1 Contiki nodes, sim-
ulated in the Cooja simulator. The Contiki software stack running on
each node was configured so as to fit in the Z1’s limited available mem-
ory, in terms of both RAM and ROM – Z1 nodes feature a nominal
92 kB ROM (when compiling with 20-bit architecture support) and
an 8 kB RAM. In practice, the compilation with the Z1 nodes was
performed with a 16-bit target architecture, which lowers the amount
of available ROM to roughly 52 kB. The simulated smart objects run
Contiki OS, uIPv6, RPL, NullMAC, and NullRDC. The software stack
deployed on the smart objects includes our lightweight implementa-
tion of the mDNS [82] and DNS-SD [83] protocols, developed in order
to minimize memory footprint and to include all the needed modules
in the smart objects. The implementations comply with the IETF stan-
dards defined in the RFCs and can be replaced by any other compatible
implementation, should no particular constraint on the code size be
present. The local service discovery mechanism was tested on IEEE
802.15.4 networks formed by Contiki nodes arranged in linear and grid
topologies. The performance indicators were:
• the time needed to perform a DNS-SD query – from the DNS-SD

client perspective;
• the time needed to process an incoming DNS-SD query and

respond – from the DNS-SD server perspective.

172 4 Discoverability

Table 4.1 Local service discovery metrics.

Metric Description Dimension

QC Query client time: the time needed by a node acting as
client to send a DNS-SD query and receive a response

ms

QS Query server time: the time needed by a node acting
as server to construct and send a response back to a
DNS-SD client

ms

The impact of the number of constrained nodes (and, therefore, the
number of hops needed) in the network was analyzed. All the results
were obtained by performing 100 service discovery runs on each con-
figuration. The specific performance metrics are detailed in Table 4.1.

In Figure 4.9a, the considered linear topology, with a maximum of
20 nodes deployed in Cooja, is shown. In particular:
• node 1 is the 6LoWPAN border router (6LBR), which is the root of

the RPL tree;
• node 2 is the node acting as DNS-SD server;
• node 3 is the node acting as DNS-SD client.

The distance between nodes was set so that the query had to follow
a multi-hop path consisting of as many hops as the number of nodes in
the network. In Figure 4.9b, the corresponding performance, in terms
of QC/QS times, as functions of the number of smart objects, is shown.
The QS time has a nearly constant value of around 65 ms, since the pro-
cessing time is independent of the number of nodes in the network.
The QC time is a linear function of the number of hops (which, in our
scenario, coincides with the number of nodes), since the query packet
has to be relayed by each intermediate node to reach the DNS-SD
server node.

More complex bi-dimensional topologies were also tested in order
to evaluate grid-like deployments. Different sizes and arrangements
for grids were considered, as shown in Figure 4.10. In all cases:
• node 1 is the 6LBR;
• node 2 is the node acting as DNS-SD server;
• node 3 is the node acting as DNS-SD client.

The topologies in Figure 4.10 are: (a) Grid-A (3 hops); (b) Grid-B
(4 hops); (c) Grid-C (6 hops); (d) Grid-D (5 hops). The corresponding

4.3 Scalable and Self-configuring Architecture for Service Discovery in the IoT 173

0

100

200

300

400

500

600

700

800

900

1000

2 4 6 8 10 12 14 16 18 20

T
im

e
 [
m

s
]

Number of smart objects

QS
QC

(a)

(b)

Figure 4.9 (a) Linear topology considered for multi-hop Zeroconf-based service
discovery; (b) average time of Zeroconf-based service discovery on Contiki nodes
with linear topology.

performance of service resolution, in terms of QC/QS times, is shown
in Figure 4.11. Just like in the linear case, the QS time is independent
of the network size (around 65 ms were still needed by the DNS-SD
server-side processing). As the number of nodes participating in the
network increases, the QC time increases as well, because of the need
for multi-hop communications from client to server. It can be seen
that, in the case of Grid-D, even though the number of nodes is larger
than in the case of Grid-C, the QC time is shorter. This is because the
distance between the nodes has decreased from 40 m to 30 m (to min-
imize collisions due to the use of NullMAC) and, therefore, the total
number of hops from the client to the server decreases. In general, it
can be concluded that, at a fixed node density, the QC time is a linear
function of the number of hops.

174 4 Discoverability

2

4

7

10 11 8

13 14
3

12

1 9

5 6

2

1

6 7 8

9 10 11

3

4 5

2

1 4

5

3

6

2

4 5

6 1

8 9

3

7

(a) (b)

(c) (d)

Figure 4.10 Grid topologies considered for bi-dimensional deployments of smart
objects: (a) Grid-A (3 hops); (b) Grid-B (4 hops); (c) Grid-C (6 hops); (d) Grid-D
(5 hops).

50

100

150

200

250

300

350

400

450

500

Grid-A Grid-B Grid-C Grid-D

T
im

e
 [
m

s
]

QS QC

Figure 4.11 Average QC/QS times of the Zeroconf-based service discovery in the
grid topologies shown in Figure 4.10.

4.3 Scalable and Self-configuring Architecture for Service Discovery in the IoT 175

4.3.4.2 Large-scale Service Discovery
The second performance evaluation phase focuses on a P2P overlay in
which multiple IoT gateways join the network in order to store new
resouces in the DLS overlay and retrieve references to existing ones.
The aim of this evaluation was to test the validity of the proposed
approach with different configurations and, in particular, to measure
the average time required by an IoT gateway to complete the three
main actions in the network (JOIN, PUT and GET) for different sizes
of the P2P overlay. We focus only on the evaluation of the DLS overlay
since the published content pertains to IoT services and resources and,
therefore, it represents the component of the proposed service discov-
ery architecture that is directly related to IoT services and resources.
The DGT allows for a structured geographical network that can be
used to efficiently discover available nodes based on location criteria
in a content-agnostic way; this is what the DGT was designed and thor-
oughly evaluated for, both in simulative environments and real-world
deployments [91, 92].

The performance evaluation was carried out for several configura-
tions, with different numbers of IoT gateways (which are also the peers
of the overlay). Each IoT gateway acts as boundary node of a wire-
less network with CoAP-aware sensor nodes. The DLS overlay uses
a Kademlia DHT and the dSIP protocol for P2P signalling [87, 93],
both implemented in Java. The P2P overlay contains up to 1000 nodes
deployed over an evaluation platform comprising four cluster hosts,
each an 8-CPU Intel®Xeon®E5504 running at 2.00 GHz, with 16∼GB
RAM and running the Ubuntu 12.04 operating system. The number
of nodes in the P2P network was split evenly among all cluster hosts
(up to 250 peers per cluster host), which were connected using a tradi-
tional switched Ethernet LAN. The HTTP-to-CoAP proxy functional-
ity relies on two different implementations:

• one based on the mjCoAP library [23], an open-source Java-based
RFC-compliant implementation of the CoAP protocol;

• the other based on the Californium platform [94].

Both HTTP-to-CoAP proxies were written in Java and provide their
own local service discovery mechanisms. The use of two different types
of HTTP-to-CoAP proxy shows clearly how the overlay can be easily
developed and integrated with currently available technologies. The
sensor nodes are either Arduino boards or Java-based emulated CoAP
nodes (just for emulating large network scenarios).

176 4 Discoverability

Each performance result is obtained by averaging over 40 executions
of PUT and GET procedures for each size of the overlay.

As anticipated, the following performance metrics are of interest:
• elapsed time for a JOIN operation (dimension: [ms]);
• number of rounds for PUT operations (adimensional);
• number of rounds for GET operations (adimensional).
The selection of the number of rounds for PUT and GET operations,
rather than their times, is expedient to present performance results
that are independent of the actual deployment environment. For
the JOIN operation, the average total time required to completion is
shown in order to provide a practical measurement of the complexity
of this operation. However, the very nature of all operations relies
on a common iterative procedure [78], thus making it possible to
intuitively derive the behavior of all operations in terms of time and
rounds.

The performance results are shown in Figure 4.12. As expected,
the complexity, in terms of JOIN time and numbers of rounds for
PUT/GET operations, is a logarithmically increasing function of the
number of peers. In Figure 4.12, the experimental data are directly
compared with the following logarithmic fitting curves [95]:

Join time ≃ 16.5 + 61.29 ⋅ log n
of rounds PUT ≃ −5.75 + 3.44 ⋅ log n
of rounds GET ≃ −0.40 + 0.15 ⋅ log n.

This clearly proves the scalability brought by the use of a P2P
approach, confirming the formal analysis and results of Maymounkov
and Mazières [78].

To summarize, we have presented a novel architecture for self-
configurable, scalable, and reliable large-scale service discovery. The
proposed approach provides efficient mechanisms for both local and
global service discovery. First, we have described the IoT gateway
and the functionalities that this element must implement to perform
resource and service discovery. Then, we have focused on large-scale
distributed resource discovery, exploiting a proper P2P overlays,
namely DLS and DGT, which implement, respectively, “white-pages”
and “yellow-pages” services. Finally, we have shown a solution
for automated local service discovery that allows for discovery of
resources available in constrained WSNs and their publication into
the P2P overlay with no need for any prior configuration (Zeroconf).

4.3 Scalable and Self-configuring Architecture for Service Discovery in the IoT 177

0 200 400 600 800 1000

Nodes

y = 16.5212 + 61.2973 · log(n)

0 200 400 600 800 1000

Nodes

y = –5.7569 + 3.4415 · log(n)

0 200 400 600 800 1000

Nodes

y = –0.40637 + 0.15098 · log(n)

0

100

200

300

400

500

600(a)
J
O

IN
 T

im
e

 [
m

s
]

(b)

0

5

10

15

20

25

P
U

T
 R

o
u

n
d

s

(c)

0

0.2

0.4

0.6

0.8

1

G
E

T
 R

o
u

n
d

s

Figure 4.12 Experimental results collected to evaluate the performance of the
DLS overlay: (a) average elapsed time for JOIN operations, (b) the average number
of rounds (adimensional) for PUT operations, and (c) the average number of
rounds (adimensional) for GET operations on the DLS towards the number of
active IoT gateways in the P2P network. Plotted data have also been used to
construct fitted curves (in red); the formulae of which are reported in the top-right
hand corners.

178 4 Discoverability

Extensive experimental performance evaluation of the proposed
local and large-scale service discovery mechanisms was performed.
For the local service discovery mechanism, experiments were con-
ducted on Contiki-based nodes operating in constrained (IEEE
802.15.4) networks with RPL in the Cooja simulator. The large-scale
service discovery mechanism was deployed and tested on P2P overlays
of different sizes, spanning from a few to 1000 peers, in order to eval-
uate the performance in terms of scalability and self-configuration.
The results show that the time required for service resolution in
the Zeroconf-based approach for local service discovery is linearly
dependent on the number of hops in the path between the client and
server node. For large-scale service discovery, the adoption of a P2P
overlay provides scalability in terms of the time required to perform
the basic publish/lookup operations.

In conclusion, the easy and transparent integration of two different
types of overlays shows the feasibility and reliability of a large-scale
architecture for efficient and self-configurable service and resource
discovery in IoT networks.

4.4 Lightweight Service Discovery
in Low-power IoT Networks

Zeroconf [60] is a protocol suite which reuses the semantics of
DNS messages over IP multicast to provide name resolution and
service discovery/advertisement over local networks. In order to
support Zeroconf service discovery mechanisms, it is very important
that the network supports IP multicasting and implements proper
forwarding techniques to guarantee that packets are delivered to all
group nodes and avoids the establishment of loops. Using efficient
packet forwarding mechanisms can bring benefits in multi-hop
communications among smart objects, in terms of delay and energy
consumption. Moreover, it is also important to note that the limited
amount of memory available on smart objects requires the adoption of
small-footprint mechanisms, in order to allow developers to integrate
a complete software stack, without having to sacrifice some modules
in order to meet the memory constraints. Although the IETF ROLL
working group is defining a Multicast Protocol for Low power and
Lossy Networks (MPL) [96], based on the Trickle algorithm [97], some

4.4 Lightweight Service Discovery in Low-power IoT Networks 179

applications might have different requirements and could benefit
from the adoption of other multicast techniques.

In the following sections we present a lightweight and low-power
multicast forwarding protocol for service discovery in smart objects
operating in IEEE 802.15.4 multi-hop networks. The proposed solu-
tion features a smaller memory footprint than in other state-of-the-art
solutions. The proposed mechanism has been implemented on Con-
tiki OS-enabled smart objects. Extensive testing is carried out in the
Cooja simulator to evaluate the feasibility and efficiency, in terms of
delay and energy consumption, of the proposed mechanism.

Local service discovery mechanisms in LANs have been proposed
in the literature. Protocols like UPnP [57] and SLP [58, 59] focus
on automatic announcement and discovery of in-network existing
services. However, their porting to IoT devices is not straightfor-
ward because of the severe computation and energy constraints
of the nodes. An alternative to these protocols relies on multicast
forwarding. For instance, Jung and Kastner proposed an efficient
group communication strategy for the CoAP and the Efficient XML
Interchange protocols [98]. To achieve group communication, they
rely on the Open Building Information eXchange standard. However,
this implementation runs on Raspberry PI nodes, so it is not suitable
for constrained devices.

Concerning 6LoWPAN and IPv6, the only active IETF draft on
efficient multicast forwarding is MPL [96], that relies on the Trickle
algorithm to manage transmissions for both control and data plane.
The different multicast interfaces, identified by an unicast address
and associated with one or more multicast domains, are handled sep-
arately, so as to maintain an independent seed set to decide whether
to accept a packet or not. The MPL forwarder, which is in charge of
sending data messages, has two different possible strategies: proactive
or reactive. In the former case, the MPL forwarder schedules the
transmission of MPL data messages using the Trickle algorithm,
without any prior indication that neighbor nodes are yet to receive the
message. After transmitting a limited number of MPL data messages,
the MPL forwarder may terminate proactive forwarding for the
MPL data message. In the latter, the MPL forwarder sends link-local
multicast MPL control messages using the Trickle algorithm. MPL
forwarders use MPL control messages to discover new MPL data
messages that have not yet been received. When an MPL forwarder
discovers that a neighbor MPL forwarder has not yet received an

180 4 Discoverability

MPL data message, it schedules the transmission of those MPL data
messages using the Trickle algorithm. The two approaches can coexist
at the same time.

Oikonomou and Phillips proposed Stateless Multicast RPL For-
warding (SMRF [99]), which relies on the presence of the RPL
routing protocol and requires group management information to be
carried inside RPL destination advertisement object (DAO) messages.
However, since, for our goal, a less complicated multicast strategy (no
group management is required) is needed, we prefer to rely on a more
lightweight flooding technique, which adapts well to duty-cycled
devices operating in RPL networks implementing the Zeroconf
protocol suite.

4.4.1 Efficient Forwarding Protocol for Service Discovery

Zeroconf is a protocol that allows for automatic creation of computer
networks based on the TCP/IP Internet stack. It does not require any
external configuration [60]. Zeroconf provides three main functional-
ities:

• automatic network address assignment;
• automatic distribution and resolution of host names;
• automatic location of network services.

Automatic network assignment comes into the picture when a node
first connects to the network. The host name distribution and reso-
lution is implemented using multicast DNS (mDNS) [61], a service
that has the same interfaces, packet formats, and semantics as stan-
dard DNS, so as to resolve host names in networks that do not include
a local name server. Zeroconf also allows to for publication of services
(DNS-SD) in a local network. Both mDNS and DNS-SD do not require
the presence of any server (and, therefore, its knowledge) to perform
publish, lookup, and name resolution operations, but rely on the use
of IP multicast communications in order to address all the nodes in
the local network. Zeroconf specifies that mDNS and DNS-SD mes-
sages (for both requests and responses) must be sent to the mDNS
IPv4/IPv6 link-local multicast address (i.e., 224.0.0.251 and ff02::fb,
respectively). However, Zeroconf does not require per-group multi-
cast routing: according to the protocol specifications, messages should
simply reach all nodes in the local network.

4.4 Lightweight Service Discovery in Low-power IoT Networks 181

6LoWPAN defines methods

• to transmit IPv6 packets and
• to form IPv6 link-local addresses and statelessly autoconfigure

addresses on IEEE 802.15.4 networks.

The RPL protocol defines a routing protocol for IP communications
in LLNs. The IETF ROLL Working Group is working on the defini-
tion of MPL, a multicast protocol providing IPv6 multicast forwarding
in constrained networks. This could become a general multicast tech-
nique able to manage multicast groups of any size. However, in some
scenarios, such as Zeroconf service discovery, there is no need to actu-
ally adopt such a full-feature multicast protocol. For the sake of Zero-
conf service discovery, it is sufficient to provide a multicast forwarding
mechanism that guarantees that messages can be delivered to all nodes
in the local network. In this section, we detail a simple and efficient for-
warding algorithm that can be adopted by constrained devices oper-
ating in RPL networks with ContikiMAC radio duty-cycling protocol,
in order to enable IP multicast communications with a small footprint,
targeting Zeroconf service discovery.

4.4.1.1 Multicast through Local Filtered Flooding
Flooding is the simplest routing protocol for broadcasting a packet to
all nodes in the network. From a practical implementation point of
view, each node forwards a received packet to all its neighbors. This
technique is effective only for cycle-free topologies (i.e., trees). In the
presence of graphs with cycles, it is necessary to implement duplicate
detection techniques to avoid forward loops. An illustration is shown
in Figure 4.13.

In order to implement an efficient mechanism to detect already-
processed packets (and, thus, avoid redundant forwarding), we pro-
pose the adoption of Bloom filters [100]. Bloom filters are probabilistic
data structures that can be used to add elements to a set and to effi-
ciently check whether an element belongs to the set or not. Bloom
filters provide two primitives:

• add(x): add element x to the set;
• query(x): test to check whether element x is in the set.

The filter does not provide a remove(x) primitive, so it is not possible
to undo an insertion. Bloom filters are slower when performing check

182 4 Discoverability

1

1

1

3

3
3

1

2

2

3

4

5
5 5

5

ServerClient

topology links
packet forwarding

possible loop

Duplicate

packet received

Duplicate

packet received

4

Figure 4.13 Flooding of a DNS-SD query in generic topology with cycles.

operations than equivalent probabilistic data structures (in terms of
provided functionalities), such as quotient filters [101], but occupy less
memory. As available memory on smart objects is extremely limited,
one of the design goals of the proposed forwarding algorithm is to
keep the memory footprint (both in terms of RAM and ROM) as low
as possible. Therefore, Bloom filters have been selected as the most
appropriate data structure to keep track of already-processed packets.

A Bloom filter is initially an array of m bits, all set to zero. The add(x)
operation passes the input argument x through k different hashing
functions and obtains k indexes in the bit array of the Bloom filter that
will be set to one. The query(x) operation verifies whether the indexes
corresponding to x are all set to one. The Bloom filter is probabilistic
in the sense that a query(x) operation can return false positives: there
can exist two values x1 and x2, such that query(x1) = query(x2) = true.
False negatives, on the other hand, are not possible: this means that if
a query(x) returns false, then x is not in filter. The query(x) operation
can thus return either “probably in the set” or “not in the set”.

Bloom filters can be instantiated to meet specific application
requirements by selecting the parameters m (number of bits in the
array) and k (number of hashing functions). For instance, the choice
of m and k has an impact on the probability of getting false positives
for query(x) operations and on memory occupation. In any case,
the impossibility of removing an element from the filter leads to
an increase in the probability of false positives as more and more

4.4 Lightweight Service Discovery in Low-power IoT Networks 183

elements are added to the filter. Since the purpose of using a Bloom
filter in the forwarding algorithm is to detect duplicate elements,
in order to cope with the problem of false positives, the Bloom
filter is periodically reset. Resetting the filter might introduce some
unnecessary retransmissions if the filter is emptied before receiving a
duplicate packet. However, retransmissions are preferable to packet
drops in order to guarantee that a multicast packet reaches all hosts.
Moreover, such unnecessary retransmissions might occur no more
than once, as the packet would then be added to the filter and not
processed upon future receptions. To summarize, upon receiving a
packet, a node will perform the following steps:

1) Check if the incoming IP packet has already been processed, by per-
forming a query operation in the Bloom filter.

2) If the Bloom filter contains the packet, discard it; otherwise, the
packet is added to the Bloom filter through an add operation.

3) If needed, forward the received IP packet to all neighbors by means
of local IEEE 802.15.4 broadcast.

4.4.2 Efficient Multiple Unicast Forwarding

While the described algorithm implements an optimized flooding
mechanism by avoiding loops through the introduction of Bloom
filters, broadcasting with the ContikiMAC radio duty-cycling pro-
tocol results in inefficient transmissions, leading to higher energy
consumption and end-to-end delays. In fact, in ContikiMAC, a broad-
casting node must repeatedly transmit a packet for the full wake-
up interval [49], in order to ensure that it can be received by all
neighbor nodes, regardless of their wake-up time. This conservative
approach has the following drawbacks:

• the number of transmitted packets is larger than necessary, and
therefore energy consumption is higher;

• when a node is broadcasting a packet, other nodes are not allowed to
transmit, and this delays the transmission until the channel is clear;

• since ContikiMAC broadcasting does not make provision to
acknowledge received packets, it might be that not all neighbors
have successfully received the packet, thus leading to unreliable
transmission.

These inefficiencies are magnified when the channel check rate (CCR)
decreases, since the full wake-up interval is longer and therefore

184 4 Discoverability

the channel is busy for longer, thus leading to even more repeated
transmissions and delays. This contrasts with the assumption that
lower CCR leads to lower energy consumption. In order to tackle these
issues, we replace local broadcast with multiple unicast transmission.
The forwarding algorithm can therefore be optimized by selecting the
receiving nodes from the list of next hops, which is retrieved from
the RPL routing table. In fact, ContikiMAC provides per-node-pair
synchronization, which ensures that packets are sent only when
the receiver is supposed to be active. The receiver is required to
send an acknowledgement for the received packet, thus transmitting
packets only for as long as necessary, thus leading to more reliable
transmissions.

The enhanced version of the proposed multicast protocol can there-
fore be detailed as follows:

1) Check if the incoming IP packet has been processed already by per-
forming a query operation in the Bloom filter.

2) If the Bloom filter contains the packet, discard it; otherwise, add
the packet to the Bloom filter through an add operation.

3) Retrieve the list of next hops from the routing table.
4) If needed, forward the received IP packet to each next hop using

IEEE 802.15.4 unicast communication.

An excerpt of a sequence of transmitted frames, using broadcast for a
DNS-SD query, is shown in Figure 4.14.

The equivalent packet flooding with multiple unicast transmissions
is shown in Figure 4.15. Transmitted packets (TX), received packets

Figure 4.14 DNS-SD query propagation DNS-SD query propagation with
ContikiMAC broadcast. Time is on the x-axis while node identifiers are on the
y-axis.

4.5 Implementation Results 185

Figure 4.15 DNS-SD query propagation with multi-unicast. Time is on the x-axis
while node identifiers are on the y-axis.

(RX), and PHY interference (PHY INT) are highlighted. The root
of the RPL tree (node 1) is always active, while all other nodes
have CCR = 8 Hz. The timelines clearly show that multiple unicast
transmissions optimize the number of transmitted packets and the
packet propagation delay in the network, while guaranteeing more
reliable transmissions. However, this comes at the cost of a slightly
increased ROM/RAM footprint.

4.5 Implementation Results

In order to evaluate the performance of the proposed multicast packet
forwarding mechanism, a Contiki-based implementation has been
developed. Besides the proposed multicast forwarding algorithm, the
mDNS and DNS-SD protocols have been re-implemented, in order
to have a smaller memory footprint than in other, already available
implementations. The performance evaluation of the Zeroconf-based
local service discovery strategy was conducted using WiSMote4

Contiki nodes, simulated in the Cooja simulator. The Contiki soft-
ware stack running on each node was configured in order to fit
in the WiSMote’s available memory, in terms of both RAM and
ROM – WiSMote nodes feature a nominal 128 kB, 192 kB or 256 kB
ROM and 16 kB RAM. The simulated smart objects run Contiki OS,
uIPv6, RPL, and ContikiMAC.

The local service discovery mechanism was tested on Contiki nodes
arranged in linear and grid topologies, as shown in Figure 4.16, in

4 http://wismote.org/.

186 4 Discoverability

2

4

8

11

15 16 17
3

12 13 14

9 1 10

5 6 7

2 4 5 6 7 8 9 10 11 12 1 13 14 15 16 17 18 19 20 3

(a)

(b)

18

Figure 4.16 Topologies considered for Zeroconf service discovery
experimentation with the proposed multicast protocol: (a) linear and (b) grid.

IEEE 802.15.4 networks, with RPL as routing protocol and Contiki-
MAC as radio duty-cycling protocol. In particular:

• node 1 is the 6LoWPAN border router (6LBR), which is the root of
the RPL tree;

• node 2 is the node acting as DNS-SD server;
• node 3 is the node acting as DNS-SD client.

The first performance indicator is memory occupation in terms
of ROM. The proposed multicast protocol – both with broadcast
and multiple unicast transmission – is compared to the MPL (with
Trickle algorithm) implementation available in the Contiki 3.x fork.
The results are shown in Table 4.2.
Table 4.2 ROM usage for the proposed multicast protocol and an MPL
implementation: total ROM occupation and as a percentage of available memory
on 128-kB WiSMote.

Library
ROM
occupation [B]

Occupation
of overall
available ROM

This work (broadcast) 842 0.64%
This work (multiple unicast) 1454 1.11%
MPL with Trickle 3804 2.90%

4.5 Implementation Results 187

As expected, the footprint of the proposed solution is significantly
smaller than that of the MPL implementation: approximately 78% for
broadcast and 62% for multiple unicast.

The next phase of experimentation aims at evaluating the time and
the overall network energy consumption needed to perform adver-
tisement and resolution of services using Zeroconf in the topologies
shown in Figure 4.16 and the proposed broadcast-based and multiple
unicast-based approaches. All the results were obtained by performing
100 service discovery runs on each configuration. The specific perfor-
mance metrics are:

• query client time (QC), which is the time needed by a node acting as
client to send a DNS-SD query and receive a response (dimension:
[ms]);

• energy consumption (E), which is the overall network energy con-
sumption for a DNS-SD query operation (dimension: [mJ]).

The impact of the CCR (varying from 8 Hz to 128 Hz) of the nodes par-
ticipating in the constrained network is analyzed. The results for QC
and E are shown in Figures 4.17 and 4.18, respectively. As expected,
QC is inversely proportional to the CCR. The benefit of using multiple

0

2000

4000

6000

8000

10000

12000

0 16 32 48 64 80 96 112 128

T
im

e
 [
m

s
]

CCR [Hz]

Broadcast Grid

Broadcast Linear

Multiple Unicast Grid

Multiple Unicast Linear

Figure 4.17 Time required to perform a DNS-SD query by a client in linear and
grid topologies with broadcast and multiple unicast.

188 4 Discoverability

0

500

1000

1500

2000

0 16 32 48 64 80 96 112 128

E
 [

m
J
]

CCR [Hz]

Broadcast Grid

Broadcast Linear

Multiple Unicast Grid

Multiple Unicast Linear

Figure 4.18 Overall network energy consumption when a client performs a
DNS-SD query in linear and grid topologies with broadcast and multiple unicast.

unicast transmissions, instead of broadcast, is higher when the CCR is
low, while the two approaches tend to overlap for higher values of the
CCR. At typical CCR values, multiple unicast performs better than
broadcast because, with lower CCR, the wake-up interval is longer
and ContikiMAC broadcast transmissions occupy the channel for the
whole interval. Higher CCR values mean shorter wake-up intervals
and therefore other nodes in the network are likely to be blocked.

In the case of the grid topology, with a CCR of 128 Hz, broadcast is
actually slightly faster than unicast. In fact, at this high rate, the smart
objects are almost behaving as with null duty-cycling, which is the
best-case scenario for broadcast transmission. As for energy consump-
tion, the results clearly show that broadcast is much more inefficient
than multiple unicast transmissions. It is important to point out that
a significant contribution (more than 60% with multiple unicast and
30% with broadcast, at CCR = 8 Hz) to the energy consumption of the
overall network comes from the border router, which does not per-
form duty-cycling. Again, this is motivated by the ContikiMAC broad-
cast strategy, which requires nodes to transmit for the whole wake-up
interval. As for QC, the two approaches tend to overlap at high CCR.
However, these results should not be interpreted as a suggestion to use

4.5 Implementation Results 189

higher CCR, as this would invalidate all the advantages of duty-cycling,
which is particularly beneficial in other scenarios.

We introduced a novel multicast forwarding mechanism targeting
service discovery in IoT scenarios. The proposed solution is suited to
bringing efficient IP-multicast support to low-power IoT networks
with duty-cycled devices. The rationale behind the presented forward-
ing mechanism is to have a lightweight and low-memory-footprint
implementation for specific Zeroconf service discovery operations. In
such scenarios, the adoption of a full-featured multicast implementa-
tion, such as MPL, might be overkill, since there is no need to provide
multicast group support. Instead, an efficient flooding mechanism
is used in the local network. The proposed multicast protocol relies
on filtered local flooding, which adapts well to duty-cycled devices
operating in LLNs with RPL. In order to avoid forward loops, we
introduce Bloom filters, an efficient probabilistic data structure, to
detect duplicate packets and prevent forward loops. The experimental
results demonstrate that the proposed multicast protocol features a
much smaller footprint, in terms of ROM occupation, than the MPL
implementation available in the official Contiki fork. Finally, delay
and network energy consumption have been evaluated.

191

5

Security and Privacy in the IoT

The Internet of Things (IoT) refers to the Internet-like structure
of billions of interconnected “constrained” devices: with limited
capabilities in terms of computational power and memory. These are
often battery-powered, thus raising the need to adopt energy-efficient
technologies. Among the most notable challenges that building
interconnected smart objects brings about are standardization and
interoperability. Internet Protocol (IP) is foreseen as the standard for
interoperability for smart objects. As billions of smart objects are
expected to appear and IPv4 addresses have mostly been used, IPv6
has been identified as a candidate for smart-object communication.

The deployment of the IoT raises many security issues, arising from

• the very nature of smart objects: the use of cryptographic algorithms
that are lightweight, in terms of processing and memory require-
ments;

• the use of standard protocols and the need to minimize the amount
of data exchanged between nodes.

This chapter provides a detailed overview of the security challenges
related to the deployment of smart objects. Security protocols at net-
work, transport, and application layers are discussed, together with
the lightweight cryptographic algorithms that it is suggested should be
used instead of conventional resource-hungry ones. Security aspects,
such as key distribution and security bootstrapping, and application
scenarios, such as secure data aggregation and service authorization,
are also discussed.

Internet of Things: Architectures, Protocols and Standards, First Edition.
Simone Cirani, Gianluigi Ferrari, Marco Picone, and Luca Veltri.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

192 5 Security and Privacy in the IoT

5.1 Security Issues in the IoT

Security in IoT scenarios is a crucial consideration. It applies at dif-
ferent levels, ranging from technological issues to more philosophical
ones, such as privacy and trust, especially in scenarios like smart toys.
The security challenges derive from the very nature of smart objects
and the use of standard protocols. Heer et al. have considered the
security challenges and requirements for an IP-based IoT by analyz-
ing existing Internet protocols that might be applied to the IoT and
their limitations and the problems that they might introduce [102].
Garcia-Morchon et al. summarize security threats in the IoT as
follows [103]:

1) cloning of smart objects by unauthorized manufacturers;
2) malicious substitution of smart things during installation;
3) firmware replacement attacks;
4) extraction of security parameters (smart things may be physically

unprotected);
5) eavesdropping attacks if communication channels are not ade-

quately protected;
6) man-in-the-middle attacks during key exchange;
7) routing attacks;
8) denial-of-service attacks;
9) privacy threats.

Threats 1–4 are related to the physical nature of smart objects,
which are typically deployed in public areas and cannot be constantly
supervised, thus leading to potential security problems. Threats 5–8
are examples of security issues arising from the need for objects to
communicate with each other. Finally, Threat 5.1 is related to the
fact that smart objects might deal with personal or sensitive data,
which, if intercepted by unauthorized parties, might create ethical
and privacy problems.

While it is possible to cope with issues arising from the physical
nature of objects only by adopting safe supply and installation mea-
sures, such as avoiding untrusted manufacturers and installers, and by
trying to protect smart objects in safe places, all other security threats
can be tackled by adopting means such as secure communication pro-
tocols and cryptographic algorithms. These measures enforce the fol-
lowing basic security properties:

5.1 Security Issues in the IoT 193

• Confidentiality: transmitted data can be read only by the communi-
cation endpoints;

• Availability: the communication endpoints can always be reached
and cannot be made inaccessible;

• Integrity: received data are not tampered with during transmission;
if this does not happen, then any change can be detected;

• Authenticity: data senders can always be verified and data receivers
cannot be spoofed.

There is an additional property of security that should always be
taken into account: authorization. Authorization means that data can
be accessed only by those allowed to do so; it should be unavailable to
others. This aspect, which requires identification of the communica-
tion endpoints, is particularly relevant in those scenarios where it is
necessary to ensure that private data cannot be accessed by unknown
or unauthorized parties.

It is a common opinion that in the near future IP will be the base
common network protocol for the IoT. This does not imply that all
objects will be able to run IP; there will always be tiny devices, such
as tiny sensors or RFID tags that will be organized in closed networks
implementing very simple and application-specific communication
protocols and that eventually will be connected to an external
network through a suitable gateway. However, it is foreseen that all
other small networked objects will exploit the benefits of IP and the
corresponding protocol suite.

Bormann has tried to define the classes of constrained devices, in
terms of memory capacity, in order to be used as a rough indication of
device capabilities [104]:

• Class 1: RAM size = ∼10 kB, Flash size = ∼100 kB;
• Class 2: RAM size = ∼50 kB, Flash size = ∼250 kB;

Some of these networked objects, with enough memory, compu-
tational power, and power supply, will simply run existing IP-based
protocol suite implementations. Others will still run standard Inter-
net protocols, but may benefit from specific implementations that try
to achieve better performance in terms of memory size, computational
power, and power consumption. In other constrained networked sce-
narios, smart objects may require additional protocols and some pro-
tocol adaptations in order to optimize Internet communications and
lower memory, computational, and power requirements.

194 5 Security and Privacy in the IoT

There is currently considerable effort within the IETF to extend
existing protocols for use in resource-constrained networked envi-
ronments. Some of the current IETF working groups targeted to these
environments are:

• Constrained RESTful Environments (CoRE) [21];
• IPv6 over Low Power WPAN (6LoWPAN) [19];
• Routing over Low Power and Lossy Networks (ROLL) [20];
• Lightweight Implementation Guidance (LWIG) [105].

In Figure 5.1, a typical IP-based IoT protocol stack is depicted and
compared with the classical Internet protocol stack used by standard
non-constrained nodes for accessing the web. At the application layer,
the HTTP [2] protocol is replaced by the Constrained Application Pro-
tocol (CoAP) [7], which is an application layer protocol to be used by
resource-constrained devices. It offers a representational state trans-
fer (REST) service for machine-to-machine (M2M) communications,
and can be easily translated to/from HTTP.

Significant reasons for proper protocol optimizations and adapta-
tions for resource-constrained objects can be summarized as follows:

• Smart objects typically use, at the physical and link layers, com-
munication protocols (such as IEEE 802.15.4) that are character-
ized by small maximum transmission units, thus leading to packet

InternetInternet of Things

PHYPhysical

Link

Network

Transport

Application

Layers

MAC

IPv6/6LowPAN

MAC

IP

TCPUDP

CoAP HTTP

PHY

Figure 5.1
Comparison
between the IoT
and the Internet
protocol stack
for OSI layers.

5.1 Security Issues in the IoT 195

fragmentation. In this case, the use of compressed protocols can sig-
nificantly reduce the need for packet fragmentation and postponed
transmissions.

• Processing larger packets likely leads to higher energy consumption,
which can be a critical issue in battery-powered devices.

• Minimized versions of protocols (at all layers) can reduce the num-
ber of exchanged messages.

Protocol compression is especially relevant when dealing with secu-
rity protocols, which typically introduce higher overhead and increase
the size of transmitted data packets. Besides protocol compression,
cross-layer interaction between protocols plays a crucial role. This is
particularly important in order to avoid useless duplication of security
features, which might have a detrimental impact on the computation
and transmission performance. For instance, end-to-end security can
be guaranteed by adopting IPSec at the network layer or TLS/DTLS at
the transport layer. Combining these two security protocols results in
very expensive processing, both at the secure channel setup phase and
during packet transmission/reception.

Another important issue in the introduction of security protocols
is interoperability. Security protocols typically allow the negotiation
of some parameters to be used during operations. Such negotiations
might be related to cryptographic and digital signature algorithms.
In order to guarantee full interoperability among smart objects, it
is necessary to define a set of mandatory options, which all objects
must implement for minimal support. The algorithms supported by
an object are declared in a negotiation phase and a suitable choice
is then agreed upon by the two communicating parties. It is not
necessary that the mandatory algorithms are standard algorithms
used in the Internet, but can be ones targeted for use in constrained
environments.

A final remark should be made about the heterogeneous nature
of smart objects, whose characteristics can vary significantly with
relevant differences with respect to those of conventional hosts.
This means that the adoption of a suite of security protocols and
cryptographic algorithms is a need and a challenge at the same time.
Standardization can lead to full interoperability, yet it is extremely
difficult to agree on a set of protocols and algorithms that will be
supported by all devices.

196 5 Security and Privacy in the IoT

5.2 Security Mechanisms Overview

As mentioned in Section 5.1, one of the most important requirements
and crucial aspects for a correct deployment and diffusion of IoT is
security. Several challenging security goals must be achieved, includ-
ing data confidentiality, data authentication, integrity, service avail-
ability, peer entity authentication, authorization, anonymity, and/or
pseudonymity. Since the protocol architecture of smart objects should
adhere to standard IP architecture (for obvious integration reasons),
many of the security mechanisms already defined and currently used
for the Internet can be reused in IoT scenarios. Moreover, since many
Internet security protocols allow for the possibility of selecting and
suitably configuring the algorithms and other cryptographic primi-
tives used, they can be reused, although possibly with suitable algo-
rithmic or configuration modifications.

In this section, the main protocols for securing IP-based end-to-end
communications between smart objects are reviewed, and the main
issues related to this type of communication are discussed. Algorithms
and other mechanisms actually used by these protocols are discussed
in Section 5.2.2.

5.2.1 Traditional vs Lightweight security

According to the protocol stacks depicted in Figure 5.1, a direct com-
parison between possible layered architectures of security protocols in
Internet and IoT scenarios is shown in Figure 5.2.

InternetInternet of Things

PHYPhysical

Layers

Link

Network

Transport

Application

MAC

IP/IPSec/HIP

MAC

IP/IPSec/HIP

TLSDTLS

CoAPs HTTPs

PHY

Figure 5.2
Comparison of
Internet and IoT
security
protocols.

5.2 Security Mechanisms Overview 197

The IoT protocol suite depicted in Figure 5.2 represents only the pos-
sible choices for a smart object to enforce data protection (at different
layers), rather than the actual set of security mechanisms effectively
implemented and simultaneously used at different layers. However, in
order to minimize the used resources, particular attention has to be
devoted to avoid the repetition of the same functionalities at different
layers, if not strictly required.

Referring to the IoT protocol stack of Figure 5.2, at the applica-
tion layer is the CoAP application protocol, which can be used for
request/response interactions between smart objects or between
a smart object and a non-constrained (standard) Internet node
(possibly by using some intermediate relay/proxy node). CoAP itself
does not provide primitives for authentication and data protection,
so these functions should be implemented directly at the applica-
tion/service layer (by directly protecting the data encapsulated and
exchanged by CoAP) or at one of the underlying layers. Although
data authentication, integrity, and confidentiality can be provided at
lower layers, such as PHY or MAC (e.g., in IEEE 802.15.4 systems),
no end-to-end security can be guaranteed without a high level of
trust on intermediate nodes. However, due to the highly dynamic
nature of the wireless multi-hop communications expected to be
used to form the routing path between remote end nodes, this
kind of security (hop-by-hop) is not, in general, sufficient. For this
reason, security mechanisms at network, transport, or application
levels should be considered instead of (or in addition to) PHY- and
MAC-level mechanisms.

5.2.1.1 Network Layer
At the network layer, an IoT node can secure data exchange in a stan-
dard way by using Internet Protocol Security (IPsec) [106]. IPSec was
originally developed for IPv6, but found widespread deployment, first,
as an extension of IPv4, into which it was back-engineered. IPSec was
an integral part of the base IPv6 protocol suite, but has since then been
made optional. IPSec can be used in protecting data flows between a
pair of hosts (host-to-host communication), between a pair of security
gateways (network-to-network communication), or between a secu-
rity gateway and a host (network-to-host communication).

For each IP packet, IPSec can provide confidentiality, integrity,
data-origin authentication and protection against replay attacks (it
works at the network layer). Such security services are implemented

198 5 Security and Privacy in the IoT

by two IPSec security protocols: Authentication Header (AH) and
Encapsulated Security Payload (ESP). While AH provides integrity,
data-origin authentication, and optionally anti-replay capabilities,
ESP can provide confidentiality, data-origin authentication, integrity,
and anti-replay capabilities.

IPSec AH and ESP define only the way payload data (clear or
enciphered) and IPSec control information are encapsulated, while
the effective algorithms for data origin authentication/integrity/con-
fidentiality are specified separately and selected from amongst a set
of available cipher suites. This modularity makes IPSec usable in the
presence of very resource-constrained devices, if a suitable algorithm
that guarantees both usability and adequate security is selected. This
means that, from an algorithmic point of view, the problem moves
from the IPSec protocol itself to the actual cryptographic algorithms.
Section 5.2.2 is dedicated to algorithm-related issues.

The keying material and the selected cryptographic algorithms used
by IPSec for securing a communication are called an IPSec Security
Association (SA). To establish an SA, IPSec can be pre-configured
(specifying a pre-shared key, hash function and encryption algorithm)
or can be dynamically negotiated by the IPSec Internet Key Exchange
(IKE) protocol. Unfortunately, as the IKE protocol was designed for
standard Internet nodes, it uses asymmetric cryptography, which is
computationally heavy for very small devices. For this reason, suitable
IKE extensions using lighter algorithms should be considered. These
issues are considered in Section 5.2.2.

Other problems related to the implementation of IPSec in con-
strained IoT nodes include data overhead (with respect to IP),
configuration, and practical implementation aspects. Data overhead
is introduced by the extra header encapsulation of IPSec AH and/or
ESP. However, this can be limited by implementing header com-
pression techniques, similar to what is done in 6LoWPAN for the IP
header. A possible compression mechanism for IPSec in 6LoWPAN
has been proposed and numerically evaluated [107].

Regarding the practical aspects, it is worth noting that IPSec is often
designed for VPNs, thus making it difficult for them to be dynamically
configurable by an application. Moreover, existing implementations
are also barely compatible with each other and often require manual
configuration to interoperate.

An alternative to using IKE+IPsec is the Host Identity Protocol
(HIP) [108]. The main objective of HIP is to decouple the two

5.2 Security Mechanisms Overview 199

functions of host locator (for routing purposes) and host identifier
(for actual host identification) currently performed by IP addresses.
For this purpose, HIP introduces a new namespace between IP and
upper layers, specific to host identification and based on public
cryptography. In HIP, the host identity (HI) is directly associated with
a pair of public/private keys, where the private key is owned by the
host and the public key is used as the host identifier. HIP defines also
an host identity tag (HIT), a 128-bit representation of the HI based
on the hash of the HI plus other information. This can be used, for
example, as a unique host identifier in the existing IPv6 API and by
application protocols. HIP also defines an HIP exchange that can be
used between IP hosts to establish a HIP security association, which
in turn can be used to start secure host-to-host communications
based on the IPSec ESP protocol [109].

In addition to security, HIP provides methods for IP multi-homing
and host mobility, which are important features for an IP-based IoT
network architecture. Some work is also being carried out to let the
HIP exchange run on very constrained devices. The approach involves
using suitable public-key cryptographic primitives, such as the ones
described in Section 5.2.2.

5.2.1.2 Transport Layer
In the current IP architecture, data exchange between application
nodes can be secured at the transport layer through standard Trans-
port Layer Security (TLS) and Datagram Transport Layer Security
(DTLS) protocols. TLS is the most common secure protocol, running
on top of the TCP, and providing to the application layer the same
connection and stream-oriented interface as TCP [110]. In addition,
TLS provides complete secure communication through:

• peer-entity authentication and key exchange (using asymmetric
cryptography);

• data authentication, integrity, and anti-replay (through message
authentication code);

• confidentiality (using symmetric encryption).

Peer-entity authentication and key exchange is provided by the
TLS handshake phase, which is performed at the beginning of the
communication.

DTLS, on the other hand, was introduced more recently, in order
to provide a security service similar to TLS on top of UDP [111].

200 5 Security and Privacy in the IoT

Although it is still poorly supported in standard Internet nodes, it is
currently the reference security protocol for IoT systems since it uses
UDP as transport and does not suffer from the problems caused by the
use of TCP in network-constrained scenarios (due to the extremely
variable transmission delay and lossy links).

Both IPSec and DTLS provide the same security features, but with
their own mechanisms and at different stack layers. Moreover, the
IPSec IKE key agreement is almost the same as the DTLS handshake
function. The main advantage of securing communications at the
transport layer with DTLS consists in allowing more precise access
control. In fact, operation at the transport layer allows applications to
directly and easily select which, if any, security service has to be set
up. Another practical advantage is that DTLS allows for the reuse of
the wide experience gained during implementations of TLS.

For these reasons DTLS has recently received significant attention
as a possible way of securing communication of constrained node/net-
work applications and it has been standardized as the security protocol
for CoAP as associated to coaps URIs [7].

Unfortunately, there are still some few issues that must be faced
in order to make DTLS more friendly for constrained devices. The
most important are related to the limited packet size imposed by the
underlying protocols, such as IEEE 802.15.4. In fact, as for IPSec,
DTLS introduces an overhead during both handshake and data
transport phases. DTLS causes fragmentation in the handshake layer,
and this can add a significant overhead. Another solution might be
to use the fragmentation offered at IPv6 or the 6LoWPAN layer.
Moreover, in order to reduce DTLS overhead, a packet optimization
and compression mechanism can be introduced. For example Raza
et al. proposed using the 6LoWPAN compression mechanisms for the
DTLS protocol [112].

From the security point of view, one problem of using DTLS or
IPSec is that end-to-end communication is not guaranteed when
intermediate nodes such as proxies or application-level gateways are
introduced. In fact, both IPSec and DTLS provide secure communi-
cations at IP and transport layers respectively, and, in the presence of
multi-hop application-level communications, they can ensure security
only within each hop. In addition, some complications in providing
end-to-end security may also arise when connectivity is realized
directly at IP and transport layers. There are scenarios in which a part
of a network (internal) of constrained devices is interconnected at IP

5.2 Security Mechanisms Overview 201

level to the rest of an (external) network, for example the Internet.
Although data protection can be guaranteed through IPSec or DTLS
protocols, other network attacks, like flooding or replay, may occur
due to the asymmetry of the resources available at the end systems;
for example, a high-powered host attached to the Internet may
attack a constrained device by trying to consume all of its limited
power or processing resources. In order to guarantee a suitable level
of protection against this kind of attack, an intermediate security
gateway may be required at the border of the internal network. A
security gateway may act as access controller, granting access to the
internal network only to trusted nodes. Solutions to this problem
have been proposed [113, 114]. In particular, in the case of end-to-end
application-level communication based on CoAP, a solution may be
to require the external node to encapsulate CoAP/DTLS/IP traffic
within a proper DTLS tunnel established between the external node
and the security gateway.

It is also important to note that, although DTLS provides a
datagram-oriented communication service (like UDP), it estab-
lishes a point-to-point secure association that is not compatible
with multicast communications (in contrast to UDP, which does
support multicast). In order to make DTLS applicable in multicast
IP-communication scenarios, some protocol extensions for group-key
management will be needed in the future.

5.2.1.3 Application Layer
Providing security at the IP layer (through IPSec) or the transport layer
(through TLS or DTLS) has several advantages. The main ones are:

• The same standard mechanism and the same implementation can
be shared by all applications, resulting in code reuse and reduced
code size.

• Programmers do not have to deal with the implementation of any
security mechanism; this significantly simplifies the development of
applications when secure communications are required.

Unfortunately, as already described, both IPSec and (D)TLS have their
own drawbacks. Probably the main one, common to both IP and trans-
port approaches, is the impossibility to ensure complete end-to-end
security when application communications are relayed by intermedi-
ate nodes that work at application level (e.g., proxies). In this case,
end-to-end security can be still provided with transport- or IP-level

202 5 Security and Privacy in the IoT

mechanisms, but only in the presence of very trusted intermediate sys-
tems. However, in this case, the overall security is complicated by the
handling of such hop-by-hop trust management.

A different approach to providing complete end-to-end security
is to enforce security directly at the application level. This of course
simplifies the requirements for underlying layers, and probably
reduces the cost, in term of packet size and data processing, since
only application data have to be secured, and only per-data and
not per-packet overhead is introduced. Moreover, multicast com-
munication and in-network data aggregation in encrypted domains
(for example through homomorphic cryptography) are easier to
implement at application level.

The main disadvantages of providing security at application level
are the complications introduced for application development and the
overall code size caused by poor reuse of software code. This is mainly
due to the lack of well-defined and adopted secure protocols at appli-
cation level. Examples of standards that can be used for this purpose
are S/MIME and SRTP. S/MIME (Secure/Multipurpose Internet Mail
Extensions) [115] is a standard for providing authentication, message
integrity, non-repudiation of origin, and confidentiality for application
data. Although S/MIME was originally developed for securing MIME
data between mail user agents, it is not restricted to mail and can be
used for securing any application data and can be encapsulated within
any application and transport protocol.

SRTP (Secure Real-time Transport Protocol) [116] is another secure
communication protocol that provides confidentiality, message
authentication, and replay protection to application data. It is an
extension of the Real-time Transport Protocol (RTP) specifically
developed for handling real-time data communications (e.g., voice or
video communication), but can also be re-used in other application
scenarios. It works in a per-packet fashion and is usually encapsulated
in UDP.

More investigation is required to state which is the standard protocol
most suitable for securing data at application layer in network- and
node-constrained scenarios such as the IoT.

5.2.2 Lightweight Cryptography

The development of the IoT will result in the deployment of billions
of smart objects that will interact with the existing Internet. Smart

5.2 Security Mechanisms Overview 203

objects are tiny computing devices, with constrained resources: low
computation capabilities, little memory, and limited battery lives.
Communication with smart objects in resource-constrained envi-
ronments must necessarily take into account these hard limitations,
especially in scenarios where security is crucial and conventional
cryptographic primitives, such as the Advanced Encryption Standard
(AES) [117], are inadequate.

Lightweight cryptography (LWC) is a very interesting research area,
aiming at the design of new ciphers that might meet the requirements
of smart objects [118]. The term “lightweight” should not be mistaken
as meaning “weak” (in terms of cryptographic protection), but should
instead be interpreted as referring to a family of cryptographic
algorithms with smaller footprint, lower energy consumption, and
low computational power needs. These ciphers aim at providing
sufficient security in the environment of restricted resources that is
encountered in many ubiquitous devices [119]. LWC thus represents
a cryptography tailored to constrained devices, which must cope with
the trade-offs between security level, cost, and performance.

In this section, an overview of the most prominent cryptographic
algorithms is presented, followed by a comparison of lightweight
cryptographic primitives and conventional ones, such as AES, which
are currently adopted in standard Internet security protocols, such
as IPSec and TLS. Symmetric ciphers for lightweight cryptography
are presented first, followed by asymmetric ciphers and then crypto-
graphic hash functions. Finally, privacy homomorphism is discussed.
We note that this overview is not meant to be detailed or extensive,
but aims at pointing out which encryption algorithms are most
suitable for practical implementation in IoT scenarios.

5.2.2.1 Symmetric-key LWC Algorithms
Symmetric-key cryptographic algorithms use the same key for
encryption of a plaintext and decryption of a ciphertext. The encryp-
tion key represents a shared secret between the parties that are
involved in the secure communication. An illustrative representation
of symmetric-key secure communication is shown in Figure 5.3.

Symmetric-key encryption can use either block ciphers or stream
ciphers:
• Block ciphers operate on fixed-length groups of bits, called blocks,

padding the plaintext to make its length equal to a multiple of the
block size. An example is the AES algorithm.

204 5 Security and Privacy in the IoT

m

m c

c

k

Dk{c}

Ek{m}

Figure 5.3 Secure
communication with
symmetric-key cryptographic
algorithms.

• In stream ciphers the digits of a plaintext are encrypted one at a time
with the corresponding digit of a pseudorandom cipher digit stream
(keystream).

Tiny Encryption Algorithm
The Tiny Encryption Algorithm (TEA) is a block cipher renowned for
its simplicity of description and implementation; typically a few lines
of code [120]. TEA operates on two 32-bit unsigned integers (which
could be derived from a 64-bit data block) and uses a 128-bit key. TEA
relies only on arithmetic operations on 32-bit words and uses only
addition, XORing, and shifts. TEA uses a large number of iterations,
rather than a complicated program, in order to avoid preset tables and
long setup times. The main design goal of TEA is to define a simple and
short cipher that does not rely on preset tables or pre-computations,
thus leading to a smaller footprint.

TEA has been revised in order to fix some weaknesses found in
the original algorithm, such as the problem of equivalent keys, which
reduced the actual key size from 128 to 126 bits. The redesign of
TEA, named XTEA (extended TEA) [121], fixes this problem by
changing the key schedule. XTEA also requires two fewer additions,
thus resulting in a slightly faster algorithm. Other modifications of
the TEA algorithm have been presented, such as XXTEA, block TEA,
speed TEA, and tiny XTEA.

As the TEA family uses exclusively very simple operations and has
a very small code size, it is an ideal candidate as a cryptographic
algorithm for implementing security mechanisms in smart objects
and wireless sensors.

5.2 Security Mechanisms Overview 205

Scalable Encryption Algorithm
The Scalable Encryption Algorithm (SEA) is targeted at small embed-
ded applications [122]. The design considers a context with very
limited processing resources and throughput requirements. Another
design principle of SEA is flexibility: the plaintext size n, key size n,
and processor (or word) size b are design parameters, with the only
constraint that n is a multiple of 6b; for this reason, the algorithm is
denoted as SEAn,b. The motivation of this flexibility is the observation
that many encryption algorithms perform differently depending on
the platform, e.g., 8-bit or 32-bit processors. SEAn,b is designed to
be generic and adaptable to different security levels (by varying the
key size) and target hardware. A great advantage of SEAn,b is the
“on-the-fly” key derivation. The main disadvantage is that SEAn,b
trades space for time and this may not be negligible on devices with
limited computational power.

PRESENT Cipher
PRESENT is an ultra-lightweight block cipher algorithm based
on a substitution-permutation network [123]. PRESENT has been
designed to be extremely compact and efficient in hardware. It
operates on 64-bit blocks and with keys of either 80 or 128 bits. It is
intended to be used in situations where low-power consumption and
high chip efficiency are desired, thus making it of particular interest
for constrained environments. The main design goal of PRESENT
is, as for the other lightweight ciphers, simplicity. PRESENT is
performed in 31 rounds, each comprising three stages:

• key-mixing, through XOR operation and a 61-bit rotation key
schedule;

• substitution layer, through 16 4-bit (input) by 4-bit (output) S-boxes;
• permutation layer.

At the end of the 31st round, an additional round is performed by
XORing the last-round subkey.

ISO/IEC 29192-2:2012 Lightweight Cryptography names PRESENT
as a block cipher suitable for lightweight cryptography [124].

HIGHT
The HIGh security and lightweigHT (HIGHT) encryption algorithm
is a generalized Feistel network with a block size of 64 bits, 128-bit
keys and 32 rounds [125]. HIGHT was designed with an eye on

206 5 Security and Privacy in the IoT

low-resource hardware performance. HIGHT uses very simple
operations, such as XORing, addition mod 28, and bitwise rotation.
The key schedule in HIGHT is designed so that subkeys are generated
on the fly both in the encryption and the decryption phases.

Comparison of Symmetric LWC Algorithms
LWC algorithms are not intended to supersede existing ciphers,
such as AES, for widespread use. Their application is limited to
those scenarios where classical ciphers might be inefficient, such as
scenarios where:
• a moderate security level is required, so that keys need not be too

long;
• encryption should not be applied to large amounts of data;
• the hardware area needed for implementation and the power con-

sumption are considered harder requirements than speed.
For constrained devices, the choice of the cryptographic algorithm

is a primary element that can affect performance. When low cost and
energy consumption are hard requirements, computational power
must inherently be downsized accordingly. Using 8-bit microcon-
trollers (such as Atmel AVR microcontrollers [126]), which have
limited capabilities in terms of computing power, memory, and
storage, requires that implemented ciphers have small footprints
and are kept simple. This may result in faster execution and thus in
lower energy consumption, which may be critical for battery-powered
devices.

Although most symmetric cryptographic algorithms have been
developed with a focus on efficient software implementations, the
deployment of smart objects will lead to an increasing attention being
given to those ciphers that will perform well in hardware in terms of
speed and energy consumption. In Table 5.1, we report a direct com-
parison of the LWC algorithms outlined in Subsection 5.2.2.1 [118],
with particular reference to the following metrics: key size, block
size, rounds, consumed area measured in gate equivalents (GEs), and
code size (in bytes). Reported values for gate equivalents are related
to hardware implementations, while code size refers to software
implementations.

5.2.2.2 Public-key (Asymmetric) LWC Algorithms
Public-key (asymmetric) cryptography requires the use of a public key
and a private key. Public keys can be associated with the identity of a

Table 5.1 Comparison of different symmetric-key cryptographic algorithms.

Cipher Key size Block size Rounds GE Code size

(hardware impl.) (software impl.)

(bits) (bits) (bytes)

Software ciphers AES 128 128 10 3400 [127, 128] 2606
TEA 128 64 32 3490 [129] 1140

3758 a) [130]
SEA96,8 96 8 ≥ 3n∕4 3925 b)[130] 2132

2547 [131]
Hardware ciphers PRESENT 80 64 32 1570 [123] 936

HIGHT 128 64 32 3048 [125] 5672

a) Round-based implementation with datapath of size n
b) Serialized implementation with datapath of size b.

208 5 Security and Privacy in the IoT

node by including them in a public certificate, signed by a certification
authority, which can be asked to verify the certificate. Public-key
cryptography requires a significant effort to deploy a public-key
infrastructure. Moreover, asymmetric cryptography requires higher
processing and long keys (at least 1024 bits for RSA [132]). Alter-
native public-key cryptographic schemes, such as elliptic curve
cryptography [133], might require shorter keys to be used in order
to achieve the same security as RSA keys. However, because of this,
symmetric cryptography is preferred in terms of processing speed,
computational effort, and size of transmitted messages. Public-key
ciphers are usually used to set up symmetric keys to be used in
subsequent communications.

RSA Algorithm
The Rivest, Shamir, and Adleman (RSA) algorithm is the best known
and widely used public-key scheme. It is based on exponentiation in
a finite field over integers modulo N . Consider a modulus N and a
pair of public and private keys (e, d). The encryption of a message m
is given by c = me mod N , while the decryption is m = cd mod N . The
key generation phase of RSA, aiming to generate the public–private
key pair, consists of the following steps:

1) Select two large prime numbers denoted as p and q such that p ≠ q.
2) Compute n = p ⋅ q.
3) Compute the Euler’s totient function Φ(n) = (p − 1) ⋅ (q − 1).
4) Choose an integer e such that 1 < e < Φ(n) and that the

GCD(e,Φ(n)) = 1.
5) Compute d = e−1mod Φ(n).

The pair (n, e) is the public key, while d is the private key.
The security of the RSA algorithm depends on the hard problem of

factorizing large integers. In order to achieve an acceptable level of
security, n should be at least 1024 bits long, so that p and q, and con-
sequently Φ(n), cannot be obtained, thus protecting the (e, d) pair.

RSA is unsuitable for adoption in constrained devices due to the
need to operate on large numbers and the fact that long keys are
required to achieve sufficient security. Moreover, both key generation
and encryption/decryption are demanding procedures that result in
higher energy consumption.

5.2 Security Mechanisms Overview 209

Elliptic Curve Cryptography
Elliptic curve cryptography (ECC) is an approach to public-key
cryptography based on the algebraic structure of elliptic curves over
finite fields. While RSA is based on exponentiation on finite fields,
ECC depends on point multiplication on elliptic curves. An elliptic
curve E over the finite field K (whose characteristic is not equal to 2
and 3) is defined as:

E(K) ∶ y2 = x3 + ax + b with a, b ∈ K

Points P = (x, y) ∈ E(K) form an Abelian group, so point addition and
scalar point multiplication can be performed.

ECC provides higher security and a better performance than the
first-generation public-key techniques, RSA and Diffie–Hellman.
Moreover, ECC is the most interesting public-key cryptographic fam-
ily for embedded environments because it can reach the same security
level as RSA with much shorter keys, as shown in Table 5.2, and with
computationally lighter operations, like addition and multiplication,
rather than exponentiation.

ECC has been accepted commercially and has also been adopted
by standards institutions such as the American National Standards
Institute (ANSI), the Institute of Electrical and Electronics Engineers
(IEEE), the International Organization for Standardization (ISO), the
Standards for Efficient Cryptography Group (SECG), and the National
Institute of Standards and Technology (NIST) [134–138].

The implementation of a lightweight hardware ECC processor for
constrained devices is attracting growing interest. A possible hard-
ware implementation of a low-area, standalone, public-key engine for
ECC, with a 113-bit binary field for short-term security and a 193-bit

Table 5.2 Comparison of security levels for symmetric ciphers, ECC, and RSA
(recommended NIST key sizes).

Symmetric key size (bits) 80 112 128 192 256

ECC key size (bits) 160 224 256 384 512
RSA key size (bits) 1024 2048 3072 7680 15360

Source: http://www.nsa.gov/business/programs/elliptic_curve
.shtml

210 5 Security and Privacy in the IoT

binary field for medium-term security, has been demonstrated [118].
The choice of a binary field, rather than a prime field, is related to
the corresponding carry-free arithmetic, which fits well in hardware
implementations. With respect to other ECC hardware implementa-
tions, the one presented uses a smaller area (in terms of GEs) and
exhibits faster execution.

Performance Comparison of Public-key Cryptographic Algorithms
Here we review the performance results [139] for implementations of
RSA and ECC public-key algorithms, such as TinyECC and Wiselib,
against benchmarks obtained in constrained devices (namely an 8-bit
Arduino Uno board). Table 5.4 shows the implementation results for
RSA public-key encryption, when the private key is held in SRAM or
in ROM. In Table 5.5, the performance of ECDSA signature algorithms
in TinyECC and Wiselib implementations is compared. A comparison
of the ROM footprints is shown in Table 5.3.

5.2.2.3 Lightweight Cryptographic Hash Functions
Cryptographic hash functions, such as MD5 [140] and SHA-1 [141],
are an essential part of any protocol that uses cryptography. Hash func-
tions are used for different purposes, such as message integrity check,

Table 5.3 Public-key encryption library ROM occupancy.

Library AvrCryptolib Wiselib TinyECC Relic-toolkit

ROM footprint (kB) 3.6 16 18 29

Table 5.4 RSA private key operation performance.

Key length (bits) Execution time (ms) Memory footprint (bytes)

Key in SRAM Key in ROM Key in SRAM Key in ROM

64 66 70 40 32
128 124 459 80 64
512 25089 27348 320 256

1024 109666 218367 640 512
2048 1587559 1740267 1280 104

5.2 Security Mechanisms Overview 211

Table 5.5 ECDSA signature performance: TinyECC versus Wiselib
implementations.

Curve
parameters

Execution
time (ms)

Memory footprint
(bytes)

Comparable RSA
key length

TinyECC Wiselib TinyECC Wiselib

128r1 1858 10774 776 732 704
128r2 2002 10615 776 732 704
160k1 2228 20164 892 842 1024
160r1 2250 20231 892 842 1024
160r2 2467 20231 892 842 1024
192k1 3425 34486 1008 952 1536
192r1 3578 34558 1008 952 1536

digital signatures, and fingerprinting. Cryptographic hash functions
should ideally be:
• computationally inexpensive;
• pre-image resistant: given a hash h, it should be difficult to invert

the hash function in order to obtain the message m such that
h = hash(m);

• second pre-image resistant: given a message m1, it should be difficult
to find another message m2 such that hash(m1) = hash(m2);

• collision resistant: it should be difficult to find two messages m1 and
m2, with m1 ≠ m2, such that hash(m1) = hash(m2) (hash collision).

In general, for a hash function with n-bit output, pre-image and
second pre-image resistance require 2n operations, while collision
resistance requires 2n∕2 operations [142]. While the design of standard
cryptographic hash functions does not focus on hardware efficiency,
lightweight cryptographic hash functions are needed for use in
resource-constrained devices in order to minimize the amount of
hardware (in terms of GEs) and energy consumption.

In this subsection, we will overview some proposals for lightweight
cryptographic hash functions that go beyond the classical MD and
SHA families.

DM-PRESENT and H-PRESENT
Bogdanov et al. have proposed DM-PRESENT and H-PRESENT, two
lightweight hash functions based on the PRESENT block cipher [142].

212 5 Security and Privacy in the IoT

DM-PRESENT is a 64-bit hash function and comes in two versions:
DM-PRESENT-80 and DM-PRESENT-128, depending on which
cipher (PRESENT-80 or PRESENT-128) is used. H-PRESENT
(namely H-PRESENT-128) is a 128-bit hash function based on the
PRESENT-128 block cipher. In their work, the authors also consid-
ered the problem of constructing longer hash functions based on the
PRESENT block cipher in order to improve the security level.

PHOTON
PHOTON [143] is a hardware-oriented family of cryptographic
hash functions designed for constrained devices. PHOTON uses a
sponge-like construction [144] as domain extension algorithm and an
AES-like primitive as an internal unkeyed permutation. A PHOTON
instance is defined by its output size (64 ≤ n ≤ 256), its input rate
r, and its ouptut rate r′ (PHOTON-n∕r∕r′). The use of a sponge
function framework aims at keeping the internal memory usage low.
The framework has been extended in order to increase speed when
hashing small messages, which is typically inefficient in a sponge
function framework.

SPONGENT
SPONGENT [145] is a family of lightweight hash functions with out-
puts of 88, 128, 160, 224, and 256 bits. SPONGENT is based on a
sponge construction with a PRESENT-type permutation. An instance
of SPONGENT is defined by the output size n, the rate r, and the
capacity c (SPONGENT-n∕c∕r). The size of the internal state, denoted
as width, is b = r + c ≥ n. Implementations in ASIC hardware require
738, 1060, 1329, 1728, and 1950 GEs, respectively, making it the hash
function with the smallest footprint in hardware. The 88-bit hash size
is used only to achieve pre-image resistance.

QUARK
The QUARK [146] hash family comes with three instances: U-QUARK,
D-QUARK, and S-QUARK, with hash sizes of 136, 176, and 256 bits,
respectively. QUARK, like PHOTON and SPONGENT, is based on
a sponge construction. The QUARK hash family is optimized for
hardware implementation and, as stated by the authors, software
implementations should instead rely on other designs. QUARK has a
bigger footprint than PHOTON and SPONGENT, but shows higher
throughput than SPONGENT and better security than PHOTON.

5.2 Security Mechanisms Overview 213

Keccak
Keccak [147] is a family of sponge functions. Keccak uses a sponge
construction in which message blocks are XORed into the initial bits
of the state, which is then invertibly permuted. In the version used in
Keccak, the state consists of a 5×5 array of 64-bit words: 1600 bits in
total. Keccak produces an arbitrary output length.

Keccak was selected by the NIST as the winner of the SHA-3 com-
petition [148] on October 2, 2012. Since that time it has been referred
to as SHA-3.

SQUASH
SQUASH (SQUare-hASH) [149] is suited to challenge-response MAC
applications in constrained devices, such as RFID tags. SQUASH
is completely deterministic, so it requires no internal source of
randomness. SQUASH offers 64-bit pre-image resistance. SQUASH
is not collision resistant, but this is not an issue since it targets RFID
authentication protocols, where collision resistance is not needed. If
collision resistance is a requirement, for instance for digital signatures,
SQUASH is unsuitable and other hash functions should be considered.

5.2.2.4 Homomorphic Encryption Schemes
Homomorphic encryption is a form of encryption that allows specific
types of computation to be executed on ciphertexts to give an
encrypted result that is the ciphertext of the result of operations
performed on the plaintext. By denoting E{⋅} as the homomorphic
encryption function and f (⋅) as the computation function, it holds
that:

E{f (a, b)} = f (E{a},E{b})

An example of homomorphic encryption is the RSA algorithm. Con-
sider a modulus N and an exponent e. The encryption of a message m is
given by E{m} = memod N . The homomorphic property holds, since:

E{m1 ⋅ m2} = (m1 ⋅ m2)e

mod N = (m1)e mod N ⋅ (m2)e mod N = E{m1} ⋅ E{m2}

Other examples of homomorphic encryption schemes are the ECC
encryption [133], the ElGamal cryptosystem [150] and the Pailler
cryptosystem [151].

214 5 Security and Privacy in the IoT

Homomorphic encryption is receiving a growing interest for appli-
cation in IoT scenarios, since it could be used to preserve confidential-
ity among the endpoints of communication, while making it possible
for intermediate nodes to process information without the need to
decrypt the data prior to processing. Homomorphic cryptosystems
usually require higher levels of computation and need longer keys to
achieve a comparable security level than symmetric-key algorithms.

Depending on the operation f (⋅) that can be performed on the
encrypted data, the homomorphic encryption scheme can be
defined as additive or multiplicative. Additive homomorphism
makes it possible to compute sums, subtractions, and scalar mul-
tiplication of its operands; multiplicative homomorphism allows
computation of the product of its operands. The RSA algorithm is an
example of multiplicative homomorphic encryption. An example of
additive homomorphic encryption is the Pailler cryptosystem. Given
a modulus n, a shared random integer g, and user-generated random
integers r1 and r2, the homomorphic property is:

E{m1} ⋅ E{m2} = (gm1 rn
1 mod n2) ⋅ (gm2 rn

2 mod n2)
= (gm1+m2)(r1r2)n mod n2 = E{m1 + m2}

Homomorphic encryption schemes that are either additive or mul-
tiplicative are termed “partially homomorphic”. If both addition
and multiplication are supported, a cryptosystem is called “fully
homomorphic”. Fully homomorphic cryptosystems preserve the ring
structure of the plaintexts and, therefore, enable more complex proce-
dures to be used. The investigation of fully homomorphic encryption
schemes is still in its early stages and no practical scheme with
acceptable performance has been found (e.g., in terms of decryption
delay). Application of these schemes to IoT scenarios is a rich research
topic.

5.2.3 Key Agreement, Distribution, and Security
Bootstrapping

Key distribution and management is a crucial issue that needs to
be addressed when security mechanisms have to be adopted. Key
agreement protocols have been around for years: the Diffie–Hellman
key exchange protocol is an example of a key agreement protocol that
two parties perform in order to setup a shared key to be used in a ses-
sion [152]. Other mechanisms have been defined and implemented.

5.2 Security Mechanisms Overview 215

The Internet Key Exchange (IKE) [153] protocol is a the protocol
defined to setup a secure association to be used in IPSec.

5.2.3.1 Key Agreement Protocols
Asymmetric (public-key) cryptographic algorithms are often the
basis for key agreement protocols, although other techniques that
do not involve the adoption of asymmetric cryptography have been
proposed. A polynomial-based key pre-distribution protocol has been
defined [154] and applied to wireless sensor networks (WSNs) [155].
A possible alternative key agreement protocol is SPINS [156], which
is a security architecture specifically designed for sensor networks. In
SPINS, each sensor node shares a secret key with a base station, which
is used as a trusted third-party to set up a new key, thus avoiding
use of public-key cryptography. Chan et al. have presented three
efficient random key pre-distribution schemes for solving the security
bootstrapping problem in resource-constrained sensor networks,
each of which represents a different tradeoff in the design space of
random key protocols [157].

5.2.3.2 Shared Group-key Distribution
The mechanisms just described apply to scenarios in which com-
munication occurs between two parties (unicast and point-to-point
communications). In other communication scenarios, such as point-
to-multipoint (multicast) or multipoint-to-point communications,
other mechanisms must be used. In such scenarios, the adoption of a
shared group key is appealing.

Secure group communications ensure confidentiality, authenticity,
and integrity of messages exchanged within a group through the use
of suitable cryptographic services and without interfering with the
communication data path. In order to achieve secure group commu-
nication, nodes must share some cryptographic material that must be
handled in a way that allows any group membership changes, both
predictable and unpredictable, to be managed. In fact, any member-
ship change should trigger a rekeying operation, which updates and
redistributes the cryptographic material to the group members. This
ensures that:

• a former member of the groups cannot access current communica-
tions (“forward secrecy”) [158];

• a new member cannot access previous communication (“backward
secrecy” [159]).

216 5 Security and Privacy in the IoT

Keoh [160] define an approach, based on DTLS records, to secure mul-
ticast communication in lossy low-power networks.

Assuming that the cryptographic primitives used cannot be broken
by an attacker with limited computational power (i.e., for whom it is
infeasible to carry out a brute force attack in order to solve the prob-
lems behind cryptographic schemes, such as discrete logarithms, or
inverting MD5/SHA-1), the main challenge is the distribution of the
group keys and their updates: this problem is referred to as group-key
distribution, and can be tackled according to two different approaches:

• current communications can be deciphered independently of pre-
vious communications (stateless receivers): this approach is called
“broadcast encryption” [161, 162];

• users maintain state of the past cryptographic material (stateful
receivers): this approach is termed “multicast key distribu-
tion” [163].

In multicast key distribution, centralized [164] or distributed [165]
approaches can be adopted. In the distributed approach, the group
key is computed and maintained by the group members themselves.
An example of a distributed approach is the Tree-based Group
Diffie–Hellman protocol [166]. In a centralized approach, the task
of key distribution is assigned to a single entity, called the key
distribution center (KDC). This approach gives a simple mechanism
with a minimal number of exchanged messages. Logical key hierarchy
(LKH) [158] and MARKS [167] are key distribution protocols that
try to optimize the number of exchanged messages between a KDC
and the group members. LKH is based on key graphs, where keys
are arranged into a hierarchy and the KDC maintains all the keys.
MARKS is a scalable approach and does not need any update message
when members join or leave the group predictably. However, MARKS
does not address the issue of member eviction and subsequent key
revocation.

5.2.3.3 Security Bootstrapping
All key agreement protocols require that some credentials, either
public/private key pairs, symmetric keys, certificates, or others, have
been installed and configured on nodes beforehand, so that the key
agreement procedure can occur securely. Bootstrapping refers to the
processing operations required before the network can operate: this
requires that proper setup, ranging from link layer to application layer

5.2 Security Mechanisms Overview 217

information, must take place on the nodes. Bootstrapping is a very
important phase in the lifecycle of smart objects and can affect the
way they behave in operational conditions. Even though the boot-
strapping phase is outside the scope of this chapter, it is important to
consider security bootstrapping mechanisms and architectures [168],
so that possible threats, such as cloning or malicious substitution
of objects, can be tackled properly. Jennings provides a sketch of a
possible protocol to allow constrained devices to securely bootstrap
into a system that uses them [169].

5.2.4 Processing Data in the Encrypted Domain: Secure
Data Aggregation

In-network data aggregation in WSNs involves executing certain
operations (such as sums and averages) at intermediate nodes in order
to minimize the number of transmitted messages and the processing
load at intermediate nodes, so that only significant information is
passed along in the network. This leads to several benefits, such
as energy savings, which are crucial for constrained environments,
such as low-power and lossy networks. Data aggregation refers to
a multipoint-to-point communication scenario that requires inter-
mediate nodes to operate on received data and forward the output
of a suitable function applied to such input data. In such scenarios,
where privacy of transmitted data is an issue, it might be necessary to
send encrypted data. Encryption can be adopted not only to achieve
confidentiality, but also to verify the authenticity and integrity of
messages.

While secure data aggregation is certainly also an application-related
issue in WSNs, optimized communication can also have other positive
impacts in some IoT scenarios. For example, in smart parking or crit-
ical infrastructure scenarios, there could be benefits from minimizing
transmitted data, possibly by adopting the privacy homomorphism
algorithms discussed in Section 5.2.2.

A simple aggregation strategy is to queue the payloads of the
received packets and send out only one packet with all the infor-
mation. This approach can bring only limited gains, since only the
payloads are considered. Another, more efficient, approach can be
used if the aggregator is aware of the type of operation that the final
recipient is willing to perform. Consider a scenario where a node is
interested in counting all the nodes in the network. Nodes send a

218 5 Security and Privacy in the IoT

ad
3
 = f(ad

1
,ad

2
)

ad
2
 = f(d

4
,d

5
)ad

1
 = f(d

1
,d

2
,d

3
)

d
1

d
3 d

4

d
5

Data

aggregator
1

Data

aggregator
3

Data

aggregator
2

Node
3

Node
2

Node
1

Node
4

Node
5

d
2

Figure 5.4 In-network data aggregation.

packet with “1” as the content. Aggregators receive these packets and
can just sum the 1s received and send out one packet of the same
size, whose content is the number of 1s received. By doing this, the
information sent across the network is minimal and the final recipient
only performs simple processing.

Typically, secure data aggregation mechanisms require nodes to per-
form the following operations:

1) At the transmitting node, prior to transmission, data are encrypted
with some cryptographic function E.

2) At the receiving node, all received data packets are decrypted with
the inverse cryptographic function D = E−1 to retrieve the original
data.

3) Data are aggregated with an aggregation function.
4) Prior to retransmission, aggregated data are encrypted through E

and relayed to the next hop.

This process is iterated at intermediate nodes until the data reach the
destination node that is interested in receiving the result of aggrega-
tion, as shown in Figure 5.4. Both symmetric and asymmetric crypto-
graphic schemes can be applied.

The aggregation procedure just outlined raises the following issues,
especially if we consider a scenario where the aggregators are not spe-
cial nodes, but have the same features as other nodes in the network:

• Aggregators must decrypt each incoming piece of information
before processing in order to perform the aggregation and, sub-
sequently, encrypt the result before transmission to the next hop.
This has clearly an impact on the computation and, therefore, on
the energy consumption of the aggregator.

• An aggregator must keep a secure association (i.e., share a symmet-
ric key) with any node that either sends data to or receives data

5.2 Security Mechanisms Overview 219

from it. This further introduces the need for increased complexity
at the aggregator.

• Intermediate aggregators access the data that they receive, even
though they are not intended to do so, since the actual recipient of
the data is another node. This might introduce privacy concerns,
especially in scenarios where intermediate nodes might not have a
trust relationship with the sender.

In order to cope with the problems sketched above, various actions
can be considered. All these issues can be addressed by using
homomorphic encryption schemes, as introduced in Section 5.2.2.4.
Homomorphic encryption can be used to avoid the need to decrypt
the information that must be aggregated and then encrypt the result;
it is possible to operate on the encrypted data directly. This can dra-
matically increase the performance, in terms of execution time and
energy savings, since the encryption/decryption operations are typi-
cally computationally demanding. Besides computational and energy
efficiencies, a positive side effect of the adoption of homomorphic
encryption is the fact that only the sources and the final destination
of the data are capable of accessing the real data, thus preserving
“end-to-end” confidentiality for the aggregation application scenario.

Additional security can be introduced by using probabilistic cryp-
tosystems, such as the Pailler cryptosystem. In this case, given two
encrypted values, it is not possible to decide whether they conceal the
same value or not. This is especially useful to prevent eavesdroppers
determining the content of a secure communication just by observing
the encrypted packets.

5.2.5 Authorization Mechanisms for Secure IoT Services

Authorization mechanisms should be considered when deploying IoT
services, in order to tackle the concerns that deployment of smart
objects and services relying on them might raise in the minds of the
public. In particular, authorization mechanisms must address the
following questions:

• Which users can access some given data?
• How should the information be presented to a given user?
• Which operations is a user allowed to perform?

Role-based access control (RBAC) and attribute-based access
control (ABAC) are the most common approaches to restricting

220 5 Security and Privacy in the IoT

system access to authorized users. RBAC maps permissions to roles
that a user has been assigned. On the other hand, ABAC maps
permissions to attributes of the user. However, authorization mecha-
nisms strongly depend on an authentication step that must have been
previously taken, in order to identify users. As an example, a complex,
context-aware access control system designed for a medical sensor
networks scenario, which has critical privacy and confidentiality
issues, has been described by Garcia-Morchon and Wehrl [170].

Popular Internet-based services, such as social networks, have
already faced the need to solve privacy-related problems when
dealing with personal and protected data that might be accessed by
third-parties; IoT applications are going to be facing the same issues.
Since IoT services are expected to be offered in a RESTful paradigm,
like those cited above, it may be helpful to borrow ideas from the
experience that has been already created with Internet REST services.

The OAuth (Open Authorization) protocol was defined to solve the
problem of allowing authorized third parties to access personal user
data [171]. The OAuth protocol defines the following three roles.

• Resource owner: an entity capable of granting access to a protected
resource, such as an end-user.

• Resource server (a service provider, SP): a server hosting user-related
information.

• Client (a service sonsumer, SC): a third-party wanting to access per-
sonal user data to reach its goals.

An additional role is an authorization server (AS), which issues access
tokens to the client after obtaining authorization from the resource
owner.

In a general scenario, a SC that has been previously authorized by a
user, can access the data that the user has made visible to the SC. This
can be achieved by letting the SC retrieve the data from the SP on the
user’s behalf. In order to do so, one possible approach could be to force
the user to give out personal authentication credentials to the SC. This
approach has many drawbacks:

• the SC is going to appear to the SP just like the actual user, thus
having unlimited access to the user’s personal data;

• the user cannot define different restrictions for different SCs;
• the user cannot revoke the grant to a SC, unless it changes its cre-

dentials.

5.2 Security Mechanisms Overview 221

Client
Authorization

Server

Resource Owner

Resource

Server
6

5

3

4

2

1

Authorization Grant

Authorization Grant

Authorization Request

Access Token

Access Token

Protected Resource

Figure 5.5 Interaction between the four roles of the OAuth protocol flow.

It is thus necessary to provide a mechanism that can separate the dif-
ferent roles. This can be done by granting specific credentials to the SC,
which they can exhibit to the SP. These contain information about the
SC’s identity and the user’s identity, so that the SP can serve its requests
according to the access policies that the user has defined for the SC.
The OAuth protocol defines the mechanisms that are needed to grant,
use, and verify these credentials, which are called “access tokens”.

The OAuth protocol defines the following flow of interaction
between the four roles introduced above, as illustrated in Figure 5.5.

1) The client requests authorization from the resource owner: the
authorization request can be made directly to the resource owner
or, preferably, indirectly via the AS as an intermediary.

2) The client receives an authorization grant, which is a credential rep-
resenting the resource owner’s authorization.

3) The client requests an access token by authenticating with the AS
and presenting the authorization grant.

4) The authorization server authenticates the client, validates the
authorization grant, and, if the grant is valid, issues an access
token.

5) The client requests the protected resource from the resource server
and authenticates by presenting the access token.

6) The SP validates the access token and, if valid, serves the request.

The OAuth authorization framework (currently in version 2.0 [172])
enables a third-party application to obtain limited access to an HTTP
service, either on behalf of a resource owner by orchestrating an

222 5 Security and Privacy in the IoT

approval interaction between the resource owner and the HTTP
service, or by allowing the third-party application to obtain access on
its own behalf.

For IoT scenarios, when using CoAP as an application-layer
protocol instead of HTTP, a modified version of OAuth should be
defined in order to ensure an authorization layer for restricting access
to smart-object services. Since OAuth is an open protocol to allow
secure authorization in a simple and standard method from web,
mobile, and desktop applications, it has to be adapted in order to
suit IoT application scenarios and to be compatible with constrained
environments. For instance, header compression should be used to
minimize the amount of information sent along.

HTTP/CoAP proxies should be able to perform OAuth proxying
as well, in order to allow interoperability between conventional
and constrained OAuth clients and servers. This raises particular
challenges since the OAuth specification recommends the usage
of HTTPS as a means to avoid man-in-the-middle attacks, thus
preventing the access tokens from being stolen and used by malicious
nodes. This means that CoAPs should be used in order to comply
with the specification. The HTTP/CoAP proxy should then be able
to perform a TLS-to-DTLS mapping in order to ensure end-to-end
security. However, the use of HTTPS (and CoAPs inherently) can be
avoided: it is possible to use OAuth over an insecure communication
channel by adopting HMAC-SHA1 and RSA-SHA1 digital signature
schemes.

5.3 Privacy Issues in the IoT

5.3.1 The Role of Authorization

The evolution of online services, such as those enabled by social net-
works, has had an important impact on the amount of data and per-
sonal information disseminated on the Internet. Furthermore, it has
prompted the development of applications that use this information to
offer new services, such as data aggregators. The information owned
by online services is made available to third-party applications in the
form of public application programming interfaces (APIs), typically
using HTTP [2] as communication protocol and relying on the REST
architectural style. The possibility that someone else besides the entity

5.3 Privacy Issues in the IoT 223

that generates the information and the service that is hosting it can
access this information has raised concerns about the privacy of per-
sonal information, since the trust relationship is no longer pairwise,
but possibly involves other parties, unknown at the time of service
subscription.

Open Authorization (OAuth) is an open protocol to allow secure
authorization from third-party applications in a simple and stan-
dardized way [173], as previously described. The OAuth protocol
provides an authorization layer for HTTP-based service APIs, typi-
cally on top of a secure transport layer, such as HTTP-over-TLS (i.e.,
HTTPS) [174]. OAuth defines three main roles in the above scenario:

• the user (U) is the entity that generates information;
• the service provider (SP) hosts the information generated by the

users and makes it available through APIs;
• the service consumer (SC), also referred to as the “client application”,

accesses the information stored by the SP for its own utilization.

In order to comply with the security and privacy requirements, U
must issue an explicit agreement that some client application can
access information on their behalf. This is achieved by granting the
client an access token, containing U’s and SC’s identities, which must
be exhibited in every request as an authorization proof. The OAuth
2.0 protocol is the evolution of the original OAuth protocol and aims
at improving client development simplicity by defining scenarios
for authorizing web, mobile, and desktop applications [175]. While
connecting to existing online services is a simple task for client
application developers, implementing an OAuth-based authorization
mechanism on the SP side is a more complicated, time-consuming,
and, potentially, computationally intensive task. Moreover, it involves
the registration of users and client applications, and the permis-
sions that users grant to SC applications, and their integration with
authentication services.

International organizations, such as the IETF and the IPSO
Alliance [176], and several research projects, such as the FP7 EU
project CALIPSO (Connect All IP-based Smart Objects!) [177],
promote the use of IP as the standard for interoperability between
smart objects.

The protocol stack run by smart objects tries to match classical Inter-
net hosts in order to make it feasible to create the so-called “extended
Internet”; in other words, the aggregation of the Internet with the IoT.

224 5 Security and Privacy in the IoT

The IETF CoRE Working Group has defined the Constrained Applica-
tion Protocol (CoAP; see Section 2.2.5.1) [7], a generic web protocol
for RESTful constrained environments, targeted to M2M applications,
which maps to HTTP for integration with the existing web.

Security in IoT scenarios is crucial. It applies at different levels, rang-
ing from technological to privacy and trust issues, especially in scenar-
ios involving smart toys (used by children) or crowd/social behavior
monitoring. This is related to the fact that smart objects might have to
deal with personal or sensitive data, which, if intercepted by unautho-
rized parties, might create ethical and privacy problems.

While the use of the OAuth protocol has little impact, in terms of
processing and scalability, on conventional Internet-based services,
its adoption in the IoT has to deal with the limitations and challenges
of constrained devices. The limited computational power of smart
objects may not be sufficient to perform the cryptographic primitives
required for message authentication, integrity checks, and digital
signatures, use of which would have a negative impact on energy
consumption. Moreover, if the access permissions for the services
provided by the smart object reside on the smart object itself, it could
be extremely hard, if not impossible, to dynamically update them
once they have been deployed. An example is found in smart parking
systems, such as Fastprk1 by Worldsensing [178], where smart objects
may be embedded directly in the asphalt.

In rapidly evolving IoT scenarios, security is an extremely important
issue. The heterogeneous and dynamic nature of the IoT raises several
questions related to security and privacy, which must be addressed
properly by taking into account the specific characteristics of smart
objects and the environments they operate in. Classical security
algorithms and protocols, used by traditional Internet hosts, cannot
simply be adopted by smart objects, due to their processing and
communication constraints. An extensive overview of state-of-the-art
security mechanisms in the IoT (including symmetric/asymmetric
cryptographic algorithms, hashing functions, security protocols at
network/transport/application layers), aiming at providing features
such as confidentiality, integrity, and authentication, can be found in
the literature [179].

An architecture for solving the problem of securing IoT cyberenti-
ties (including smart objects, traditional hosts, and mobile devices),

1 http://www.fastprk.com/.

5.3 Privacy Issues in the IoT 225

called U2IoT, has been proposed [180], with the goal of addressing
the issues of expanding domains, dynamic activity cycles, and het-
erogeneous interactions. U2IoT takes into account security in interac-
tions that occur in three different phases: preactive, active, and postac-
tive. In particular, the active phase provides authentication and access
control functionalities. Authorization is therefore being considered a
major issue, since it is becoming increasingly evident that access to
resources in a global-scale network, such as the IoT, must be controlled
and restricted in order to avoid severe security breaches in deployed
applications.

Several other studies have addressed very specific issues for the
IoT. A lightweight multicast authentication scheme for small-scale
IoT applications has been proposed [181]. Lai et al. take into account
user mobility (i.e., roaming) and propose CPAL, an authentication
mechanism designed to provide a “linking function” that can be used
to enable authorized parties to link user access information, while
preserving user anonymity and privacy [182]. The secure integration
of WSNs into the IoT is discusses by Li and Xiong [183], who propose
a security scheme that allows secure communication with Internet
hosts by providing end-to-end confidentiality, integrity, and authen-
tication, based on a public-key infrastructure. The proposed scheme
also introduces a two-step (offline/online) signcryption mechanism,
in order to minimize processing time.

Several authentication mechanisms have been defined for other
issues, such as network access, that are also relevant for IoT scenar-
ios. The Protocol for Carrying Authentication for Network Access
(PANA) [184] is an IETF standard defining a network-layer transport
for network access authentication. This is typically provided by the
Extensible Authentication Protocol (EAP) [185]. PANA carries EAP,
which can carry various authentication methods. OpenPANA [186] is
an open-source implementation of PANA.

The problem of service authorization has been extensively treated
in the literature. Several studies have focused on how to implement
different access control strategies.

• Discretionary access control (DAC) restricts access to objects based
on the identity of subjects and/or the groups to which they belong.
The controls are discretionary in the sense that a subject with cer-
tain access permissions can transfer that permission on to any other
subject [187].

226 5 Security and Privacy in the IoT

• Role-based access control (RBAC) relies on a policy that restricts
access to resources to those entities that have been assigned a spe-
cific role [188–190]: RBAC requires that the roles are defined and
assigned to users, and that access permissions are set for resources.

• Attribute-based access control (ABAC) restricts resource access to
those entities that have one or more specific attributes (e.g., age,
geographic location, etc.) [191].

RBAC and ABAC are the most common approaches to restricting
system access to authorized users. RBAC maps permissions to roles
that a user has been assigned. On the other hand, ABAC maps per-
missions to attributes of the user. Typically, authorization mechanisms
strongly depend on an authentication step that must have been pre-
viously taken in order to identify users so that either their roles or
their attributes can be verified and matched against the policies set
for resource access.

Schiffman et al. have presented a mechanism for fine-grained
sub-delegation of access permissions for consumers of web appli-
cations, called DAuth. [192], Applying access control mechanisms
in constrained scenarios, such as wireless sensor networks, is a
challenging task.

IETF Authentication and Authorization for Constrained Envi-
ronments (ACE) Working Group has also proposed the Delegated
CoAP Authentication and Authorization Framework (DCAF) [193].
The DCAF architecture introduces authorization servers, which are
used to perform authentication and authorization. Smart objects are
prevented from having to store a large amounts of information by
delegating the task to an external entity. While this solution is very
similar to the one that we are about to describe, it focuses mainly
on constrained environments, while the proposed one is intended to
be generic and transparently integrated into both IoT and Internet
scenarios.

In this section, we present a novel architecture, targeted at IoT
scenarios, for an external authorization service based on OAuth, and
called IoT-OAS. The delegation of the authorization functionalities to
an external service, which may be invoked by any subscribed host or
thing, affects:

• the time required to build new OAuth-protected online services,
thus letting developers focus on service logic rather than on security
and authorization issues;

5.3 Privacy Issues in the IoT 227

• the simplicity of the smart object, which does not need to imple-
ment any authorization logic but must only securely invoke the
authorization service in order to decide whether to serve an
incoming request or not;

• the possibility to dynamically and remotely configure the access
control policies that the SP is willing to enforce, especially in
those scenarios where it is hard to intervene directly on the smart
object.

Although much work has been done to define and integrate
authorization mechanisms in several scenarios, the current proposal,
unlike others, focuses on the definition of a generic authorization
service that can be integrated into both Internet and IoT scenarios. In
particular, the proposed mechanism explicitly takes into account the
hybrid nature of the extended Internet that will be deployed in com-
ing years. Moreover, the proposed architecture minimizes the effort
required by service developers to secure their services by providing
a standard, configurable, and highly interoperable authorization
framework.

5.3.2 IoT-OAS: Delegation-based Authorization
for the Internet of Things

5.3.2.1 Architecture
IoT-OAS can be invoked by any subscribed host or smart object. It
can be thought of as a remotely triggered switch that filters incom-
ing requests and decides whether to serve them or not. The design
goal of the IoT-OAS architecture is to relieve smart objects of the bur-
den of handling a large amount of authorization-related information
and processing all incoming requests, even if unauthorized. By out-
sourcing these functionalities, smart objects can keep their applica-
tion logic as simple as possible, thus meeting the requirements for
keeping the memory footprint as low as possible, which is extremely
important for constrained devices. From a broader perspective, entire
large-scale IoT deployments can greatly benefit from the presence of
IoT-OAS in terms of configurability: a single constrained node (or a
group of constrained nodes as a whole) can have their access poli-
cies updated remotely and dynamically, without requiring any direct
intervention, which is especially convenient for smart objects placed in
hard-to-reach and/or unattended locations. OAuth allows third-party

228 5 Security and Privacy in the IoT

applications to get access to user-related information hosted on an
online service. All issued requests must certify that the SC application
has been granted permission by the user to access its personal infor-
mation on its behalf, namely by adding an access token, which relates
the user’s identity and the client application. For ease of presentation,
the acronyms used in this section are summarized in Table 5.6.

Besides the three roles introduced in Section 5.3.1 (U, SP, and
SC), OAuth adds an additional role: the authentication service (AS),
which is invoked by the SP to verify the identity of a user in order to
grant access tokens. The standard OAuth operation flow is shown in

Table 5.6 Acronyms used.

U User or resource owner
SP Service provider, which hosts users’ resources
SC Service consumer, which accesses users’ data stored by the SP
AS Authentication service, which is used by the SP to verify the

identity of a user
RT Request token, a temporary ticket used by the SC to ask U to

authorize access to its resources
AT Access token, used by the SC to perform authenticated

requests
IoT-OAS Delegated external authorization service, which can be

invoked by smart objects to perform authorization checks to
access protected resources

Protected

Services

API

Authorization

Layer

Service

Provider

User Data

User

Service

Consumer

(Web, Mobile, ...)

Authentication Service

7

1

4

3

5

6

2

8

Figure 5.6 Standard OAuth roles and operation flow. The numbers indicate the
sequence.

5.3 Privacy Issues in the IoT 229

Figure 5.6. The procedure through which a SC can get a valid access
token is the following:

1) U is willing to use the SC, either from a webpage, a mobile app, or
a desktop application.

2) SC needs to access U’s personal information hosted on the SP; SC
asks the SP for an RT carrying SC’s identity, which will be later
exchanged for an AT.

3) SP verifies SC’s identity and returns a RT.
4) SC redirects U to the SP’s authentication service with the RT
5) U contacts the SP’s AS presenting the RT and is asked to authen-

ticate in order to prove its consent to grant access permissions to
the SC.

6) The RT is exchanged for an AT, which relates U and SC.
7) The SC receives the AT through a redirection to a callback URL

(i.e., authentication callback).
8) The SC can issue requests to SP including the AT, for services that

require U’s permission (protected APIs).

The design goal of the IoT-OAS architecture is to enable SPs, either
based on HTTP or CoAP, to easily integrate an authorization layer
without requiring any implementation overhead, other than invoking
an external service. Delegating the authorization logic to an external
service requires a strong trust relationship between the SP and the
IoT-OAS. Figure 5.7 shows the operation flows for the AT grant
procedure and the SC-to-SP interaction in the IoT-OAS architecture.
A detailed description of these operation flows is presented in the
remainder of this section.

5.3.2.2 Granting Access Tokens
The operation flow to grant an AT to a SC is shown in Figure 5.7a. The
procedure resulting in the grant of an AT to a SC is similar to that of
the standard OAuth operation flow, yet it has the following important
differences:

1) As in the standard operation flow, the procedure is initiated by U.
2) The SC regularly contacts an SP to receive an RT.
3) The SP, which does not implement any OAuth logic, contacts

the IoT-OAS asking for an RT for the SC by performing a
generate_request_token RPC request.

4) The IoT-OAS verifies the identity of the SC and issues an RT,
which is returned to the SP.

230 5 Security and Privacy in the IoT

Service

Provider

Service

Provider

Service

(a)

(b)

Authentication

Service

Service

Consumer

OAuth

Service

OAuth

Service

Trust relationship / Secure Channel

Access Token Response

Generate Access Token (AT)

Generate

Request Token

Request Token

Response

Request Token

Response

Request Token

(RT)

Request

RT | User

Handle AT to Service Consumer

Callback URL

5

4

3

10

9

11

2

8

2

3

4

1

7
6

1
RT

verification response

RT

User

request

+

access

token

response

Trust relationship / Secure Channel

verify(provider,request,access_token)

Permission

Store

Figure 5.7 IoT-OAS main procedures: (a) AT grant procedure; (b) SP integration
with IoT-OAS for request authorization. The numbers indicate the sequence.

5) The SP hands the RT back to the SC.
6) The SC redirects U to the AS with the received RT.
7) U contacts the SP’s AS presenting the RT and authenticates it in

order to prove consent to grant access permissions to the SC.
8) The AS notifies the SP that the authentication is successful and

presents the RT with U’s identity.
9) The SP asks the IoT-OAS to exchange the RT with an AT for U by

issuing a generate_access_token RPC request.
10) The IoT-OAS generates the AT and returns it to the SP.
11) The SP hands the AT to the SC via an authentication callback.

5.3 Privacy Issues in the IoT 231

The use of an external IoT-OAS is totally transparent to the SC,
which has no knowledge of how the SP is implementing the OAuth
protocol. This leads to full backward compatibility with standard
OAuth client applications. On the SP side, all the OAuth logic is
delegated to the IoT-OAS, with the only exception being the AS.
However, it is not mandatory that the AS resides within the SP’s
realm, as it might interface with third-party authentication services,
such as OpenID [194]. The only information the SP must hold is the
reference to users’ identities in order to make it possible to set up
access permission policies on a per-user basis.

5.3.2.3 Authorizing Requests
The interaction between SP and IoT-OAS when serving incoming
requests is shown in Figure 5.7b. Since the presence of the IoT-OAS
is totally transparent to the SC, the communication between the SC
and the SP is a regular OAuth communication. The difference is,
again, on the side of the SP, which needs to contact the IoT-OAS to
verify that the incoming requests received from the SC are authorized
in order to decide whether to serve them or not.

The operation flow is as follows:

1) The SC requests U’s information from the SP using the
AT received after U’s authentication (as in standard OAuth
consumer-to-provider communication).

2) The SP, which does not implement any OAuth logic, refers to the
IoT-OAS to verify if the incoming request is authorized (in order
to do so, the SP issues a verify RPC request).

3) The IoT-OAS verifies the SC’s request and informs the SP about
the SC’s authorization for the request by performing a lookup in
the permission store.

4) The SP serves the SC’s request according to the IoT-OAS’s
response.

5.3.2.4 SP-to-IoT-OAS Communication: Protocol Details
The SP interacts with the IoT-OAS with a simple communication
protocol. The protocol comprises three remote procedure calls
(RPCs), which are detailed below. It is important to note that del-
egating the authorization decision to an external service requires
an extremely high trust level between the SP and the IoT-OAS.
Moreover, all communications between them must be secured and

232 5 Security and Privacy in the IoT

mutually authenticated, so that the SP security level is at least as
high as if the authorization service were implemented internally.
To ensure that an appropriate security level is met, communica-
tions between the SP and the IoT-OAS must occur with a secure
transport such as HTTP-over-TLS (HTTPS), CoAP-over-DTLS
(CoAPs) [195, 196], or HTTP/CoAP over a secure host-to-host chan-
nel setup with IPSec [196]. Mutual authentication ensures that the
IoT-OAS is verified and the requests come from a verified SP, whose
identity is, therefore, implicit. The three RPCs of the SP-to-IoT-OAS
communication protocol are as follows:

1) generate_request_token(): this RPC is called by the SP to request
the IoT-OAS to generate a request token for the given SC, to be
later exchanged for an AT.

2) generate_access_token(request_token,user_id): this RPC is called
by the RPC to request the IoT-OAS to exchange the given RT for a
new AT related to the given user.

3) verify(request,access_token): this RPC is called by the SP to request
the IoT-OAS to verify if the given SC request is authorized with the
provided AT by performing a lookup into the permission store.

5.3.2.5 Configuration
IoT-OAS provides high customization to SPs by offering per-user
and per-service access control. The SPs can remotely configure and
manage the permissions that SCs are granted, and these can be
created, updated, revoked, and/or duplicated dynamically at any time.
The IoT-OAS thus offers a dedicated SP access control configuration,
known as the permission store. The permission store is a collection of
the relations between SCs, users, and SP services and can be seen as a
lookup table.

The configuration of the permission store can be through web inter-
faces or API calls provided by IoT-OAS. The possibility to dynamically
manage the permissions, rather than having them co-located with the
SP, is an extremely valuable feature, especially if SPs are smart objects
with the need to be deployed in hard-to-access locations and that may
be automatically and/or remotely reconfigured.

5.3.3 IoT-OAS Application Scenarios

In this section, we present four significant IoT application scenar-
ios to illustrate the functionaly of the proposed IoT-OAS service

5.3 Privacy Issues in the IoT 233

architecture. We consider an external client (based on HTTP or
CoAP according to the context) that wants to access a remote service
provided by a network broker (NB), which is a border network
element that exposes services on behalf of constrained nodes residing
in the internal network. Alternatively, the service may be exposed
directly by a generic smart object S directly available in the network
behind a network gateway. To clarify the following description we
assume that the OAuth credentials owned by the external client have
been obtained through a prior configuration phase based on the
IoT-OAS service described in Section 5.3.2 and that service discovery
is performed through an application-specific procedure, which is not
directly related to the approach presented in this work.

5.3.3.1 Network Broker Communication
In the first scenario, illustrated in Figure 5.8a, the client C (acting as
an SC) discovers ServiceA provided by the NB. In order to serve exter-
nal requests, the NB can retrieve information from different smart
objects in its network. In this case, in order to simplify the context,
we assume that the NB needs information only from the smart object
S2. The client, through a secure channel based on HTTPS or CoAPs,
sends a request R for ServiceA including its OAuth credentials, denoted
as OAuth(C). The client’s OAuth information is used by the service
provider NB to validate the request, to verify the identity of C, and
to confirm that C has the right privileges to access the requested ser-
vice. Since NB could be implemented using an embedded device or,
more generally, using a device with limited computational and stor-
age capabilities (which, with high probability, does/should not imple-
ment a complex logic such as OAuth), it delegates the verification of
the incoming request to the IoT-OAS. Once the NB receives R from
C, it sends a verification request to the IoT-OAS (always through a
secure channel based on HTTPS or CoAPs, according to its imple-
mentation or capabilities) with the original incoming request and its
credentials. The IoT-OAS, after verifying the validity of the submit-
ted request (according to NB’s configuration) and C’s identity, replies,
communicating if R is authorized. If the feedback is positive and C is
allowed to access the requested service, the NB internally contacts the
smart object S2 to retrieve the required information and sends back
the response to C. If the response received from the IoT-OAS is neg-
ative, C is not granted access, and the NB responds immediately to C
without any kind of interaction with the smart object.

234 5 Security and Privacy in the IoT

HTTPS/CoAPs

R = Req[OAuth(C);ServiceA(P1)]

Response

Verify
 (R

)

Yes (O
Auth(C

)/N
o

OAuth

Service

(a)

Client

(HTTP/CoAP)

Network

Broker

S1
S4

S5

S3

S24

2

2

3

1

6

(d)

CoAPs | CoAP/UDP/IPSec

HTTPS

Response

Verify

OAuth

Service

Yes (OAuth(C))/No

R = Req[OAuth(C):ServiceB(S2)]

Client

(HTTP/CoAP)

Gateway

S1
S4

S5

S3

S2

4

3

1
2

(c)

CoAPs | CoAP/UDP/IPSec

Response

Verify

OAuth

Service

Yes (OAuth(C))/No

R = Req[OAuth(C);ServiceB(S2)]

CoAP

Client
Gateway

S1
S4

S5

S3

S2

1
2

4

3

(b)

HTTPS/CoAPs

R = Req[OAuth(C);ServiceB(S2)]

Response

Verify
 (R

)

Yes (O
Auth(C

)/N
o

OAuth

Service

Client

(HTTP/CoAP) Gateway

S1
S4

S5

S3

S2

7

3
2

5

1

6
4

8

Figure 5.8 Application scenarios: (a) client-to-network broker communication;
(b) gateway-enabled communication; (c) end-to-end CoAP communication
between the external client and the smart object; (d) hybrid gateway-based
communication.

5.3 Privacy Issues in the IoT 235

5.3.3.2 Gateway-based Communication
In the second scenario, illustrated in Figure 5.8b, an external client C,
based on HTTPS or CoAPs communications, is interested in accessing
a service directly provided by the smart object S2, which does not run
HTTP or CoAP (due to computational or implementation constraints)
and is behind a gateway G. Gateway G has the role of translating the
incoming requests from external networks to available smart objects
inside its own network. In this scenario, C sends a request R (includ-
ing the client’s OAuth credentials) to G for ServiceB provided by S2. R
is translated by G and forwarded to S2, which, in order to validate the
new request and the requestor’s identity, sends through G a verifica-
tion request to the IoT-OAS using a secure communication protocol
such as HTTPS or CoAPs. The verification message and the response
(positive or negative) generated by S2 are managed and translated by
G to allow communication between IoT-OAS, the smart object, and
the client.

5.3.3.3 End-to-End CoAP Communication
Figure 5.8c shows a different scenario, where a smart object S2 (i.e.,
reachable at an IPv6 address) in a sensor network directly provides
a remote CoAP service ServiceB. Since all the involved entities can
use the same protocol, in this case the network gateway acts only as
a router without the need to translate incoming and outgoing mes-
sages between the external world and the sensor network. The CoAP
client CC sends securely and directly to the smart object a request R
containing its OAuth credentials and the reference for ServiceB pro-
vided by S2. Since the smart object is usually a sensor or an embedded
device with limited computational and storage capabilities (and there-
fore, as previously described, does not implement a complex logic like
OAuth), it delegates the verification of the incoming request to the
OAuth service. S2 sends a verification request to IoT-OAS over CoAPs
to check R. The IoT-OAS validates the request based on CC’s creden-
tials and the type of requested service; it then informs the smart object
S2 about whether R can be served or not. S2, according to the response
of IoT-OAS, replies to the requesting client with the service outcome
or, if the CC is not allowed to access ServiceB, with an error message.

5.3.3.4 Hybrid Gateway-based Communication
The last scenario, shown in Figure 5.8d, is characterized by a hybrid
approach in which the external client uses an application protocol

236 5 Security and Privacy in the IoT

(such as HTTP) that is different from that used by smart objects
(CoAP). Similar to the case in Section 5.3.3.2, the gateway manages
the communication between the external world and its network: in
this case, it just translates incoming requests from HTTP to CoAP
for S2. Once a new request (with OAuth credentials and service
reference) arrives at the smart object, it uses IoT-OAS securely to
verify the validity of R, through CoAPs. The response (positive or
negative, according to the IoT-OAS feedback) is translated by the
gateway from CoAP to HTTP and forwarded to the client through a
secure channel.

237

6

Cloud and Fog Computing for the IoT

6.1 Cloud Computing

Cloud Computing is an increasing trend, involving the move to
external deployment of IT resources, which are then offered as
services [197]. Cloud Computing enables convenient and on-demand
network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage elements, applications, and services).
These can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction [198]. At the hardware
level, a number of physical devices, including processors, hard drives,
and network devices, fulfill processing and storage needs. Above
this, a combination of a software layer, a virtualization layer, and a
management layer, allows effective management of servers.

The available service models are as follows:

• Infrastructure as a Service (IaaS): provides processing, storage, net-
works, and other computing resources, allowing the consumer to
deploy and run arbitrary software, including OSs and applications.
The consumer has control over the OSs, storage, deployed appli-
cations and, possibly, limited control of select networking compo-
nents.

• Platform as a Service (PaaS): provides the capability to deploy
infrastructure and consumer-created or acquired applications.
The consumer has no control over the underlying infrastructure
(e.g., network, servers, OSs, or storage) but only manages deployed
applications.

Internet of Things: Architectures, Protocols and Standards, First Edition.
Simone Cirani, Gianluigi Ferrari, Marco Picone, and Luca Veltri.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

238 6 Cloud and Fog Computing for the IoT

• Software as a Service (SaaS): provides the capability to use the
provider’s applications, running on the cloud infrastructure. These
application are accessed from client devices through suitable client
interfaces. The consumer does not manage or control the under-
lying cloud infrastructure or individual application capabilities,
with the possible exception of limited user-specific application
configuration settings.

Cloud computing is generally complementary to the IoT scenario, as
it acts

• as a collector of real-time sensed data
• as provider of services built on the basis of collected information.

The main need is to be extremely scalable, thus allowing support for
large-scale IoT applications. There are several open-source frame-
works and technologies which can be used for cloud IoT systems,
such as OpenStack (created by Rackspace and NASA in 2010) and
OpenNebula [199]. The former is an open cloud OS that controls
large pools of computing, storage, and networking resources and can
be seen as a framework with a vendor-driven model; the second is
an open-source project aimed at delivering a simple, feature-rich,
and flexible solution to build and manage enterprise clouds and
virtualized data centers.

6.2 Big Data Processing Pattern

From a business perspective, managing and gaining insights from data
is a challenge and a key in gaining competitive advantage. Analytical
solutions that mine structured and unstructured data are important,
as they can help companies to gain information, not only from their
privately acquired data, but also from the large amounts of data pub-
licly available on the web, social networks, and blogs. Big Data opens
up a wide range of possibilities for organizations to understand the
needs of their customers, predict their demands, and optimize valu-
able resources.

Big Data is different to and more powerful than traditional analytics
tools used by companies [200]: it can find patterns and glean intelli-
gence from data, translating them into business advantage. However,

6.3 Big Stream 239

Big Data is powered by what is often referred as a “multi-V” model, in
which V stands for:

• variety: to represent the data types;
• velocity: to represent the rate at which the data is produced and pro-

cessed and stored according with further analysis;
• volume: to define the amount of data;
• veracity: refers to how much the data can be trusted given the relia-

bility of its sources.

Big Data architectures generally use traditional processing patterns
with a pipeline approach [201]. These architectures are typically
based on a processing perspective: the data flow goes downstream
from input to output, to perform specific tasks or reach the target
goal. Typically, data are sequentially handled with tightly coupled
pre-defined processing sub-units (static data routing). The paradigm
can be described as “process-oriented”: a central coordination point
manages the execution of subunits in a certain order and each
sub-unit provides a specific processing output, which is used only
within the scope of its own process, without the possibility of being
shared among different processes. This approach represents a major
deviation from traditional service-oriented architectures, where the
sub-units are external web services invoked by a coordinator process
rather than internal services [202]. Big Data applications generally
interact with cloud computing architectures, which can handle
resources and provide services to consumers. Assunção et al. have
provided a survey of approaches, environments, and technologies in
key areas for big data analytics, investigating how they can contribute
to build analytics solutions for clouds [203]. Gaps in knowledge and
recommendations for the research community on future directions
for cloud-supported big data computing are also described.

6.3 Big Stream

Billions of smart objects are expected to be deployed in urban, home,
industrial, and rural scenarios, in order to collect information, which
might then be used to build new applications. Shared and interoper-
able communication mechanisms and protocols are currently being
defined and standardized, allowing heterogeneous nodes to efficiently

240 6 Cloud and Fog Computing for the IoT

communicate with each other and with existing Internet actors. An
IP-based IoT will be able to extend and interoperate seamlessly with
the existing Internet. Standardization institutions, such as the IETF
[204], and several research projects [177] are in the process of defining
mechanisms to bring IP to smart objects, a result of the need to adapt
higher-layer protocols to constrained environments. However, not all
objects will support IP, as there will always be tiny devices that are
organized in closed/proprietary networks and rely on very simple and
application-specific communication protocols. These networks will
eventually connect to the Internet through a gateway/border router.

Sensed data are typically collected and sent by uplink, namely from
IoT networks, where smart objects are deployed, to collection envi-
ronments (server or cloud), possibly through an intermediate local
network element, which may perform some processing tasks, such as
data aggregation and protocol translation. Processing and storing data
at the edge of networks (e.g., on set-top boxes or access points) is the
basis for the evolution of fog computing [205] in IoT scenarios. Fog
Computing is a novel paradigm that aims at extending cloud comput-
ing and services to the edge of the network, leveraging its proximity
to end users, its dense geographical distribution, and its support for
mobility. The wide geographical distribution makes the fog computing
paradigm particularly suited to real-time big data analytics. Densely
distributed data collection points allow a fourth axis – low-latency – to
be added to typical big data dimensions (volume, variety, and velocity).
Figure 6.1 shows the hierarchy of layers involved in data collection,
processing, and distribution in IoT scenarios.

With billions of nodes capable of gathering data and generating
information, the availability of efficient and scalable mechanisms for
collecting, processing, and storing data is crucial. Big Data techniques,
which were developed over the last few years (and became popular
due to the evolution of online and social/crowd services), address
the need to process extremely large amounts of heterogeneous data
for multiple purposes. These techniques have been designed mainly
to deal with huge volumes (focusing on the amount of data itself),
rather than providing real-time processing and dispatching. Cloud
Computing has been direct application for big data analysis due to
its scalability, robustness, and cost-effectiveness. The number of data
sources, on one side, and the subsequent frequency of incoming data,
on the other side, create a new need for cloud architectures to handle
massive flows of information, thus producing a shift from the big data

6.3 Big Stream 241

Cloud

Fog

loT Networks

GW GW GW

Services Storage Processing

Figure 6.1 The hierarchy of layers involved in IoT scenarios: the fog works as an
extension of the cloud to the network edge, where it can support data collection,
processing, and distribution.

paradigm to the big stream paradigm. In addition, the processing and
storage functions implemented by remote cloud-based collectors are
the enablers for their core businesses: providing services based on the
collected/processed data to external consumers.

Several relevant IoT scenarios, (such as industrial automation,
transportation, networks of sensors and actuators), require real-time/
predictable latency and could even change their requirements (e.g., in
terms of data sources) dynamically and abruptly. Big-stream-oriented
systems will be able to react effectively to changes and to provide
smart behavior when allocating resources, thus implementing scal-
able and cost-effective cloud services. Dynamism and real-time
requirements are another reason why big data approaches, with their
intrinsic inertia (big data typically uses batch processing), are not
suitable for many IoT scenarios.

The main differences between the Big Data and Big Stream
paradigms are the nature of the data sources and the real-time/latency
requirements of the consumers. The big stream paradigm allows
real-time and ad-hoc processing to be performed, to link incoming
streams of data to consumers. It offers a high degree of scalability,
fine-grained and dynamic configuration, and management of hetero-
geneous data formats. In brief, while both Big Data and Big Stream

242 6 Cloud and Fog Computing for the IoT

Sensor Streams

Internet Streams

Feedbacks & Updates

Improve Efficiency

Provide New Services

Power Application

Crowdsourcing Streams
“Big Data”

Analytics

(a)

Loopback Listeners

Multiple Listeners

Sensor Streams

Internet Streams

Crowdsourcing Streams “Big Stream”

Management

(b)

Figure 6.2 (a) Data sources in big data systems. (b) The multiple data sources and
listener management in big stream systems.

systems deal with massive amounts of data, the former focuses on the
analysis of data, while the latter focuses on the management of flows
of data, as shown in Figure 6.2.

The difference is in the meaning of the term “big”, which refers to
the volume of data for big data and to the global data generation rate
of the data sources for big stream. This difference is also relevant for
the data that are considered relevant to consumer applications. For
instance, while for big data applications it is important to keep all
sensed data in order to be able to perform any required computation,
in big stream applications, data aggregation or pruning may be
performed in order to minimize the latency in conveying the results
of computations to consumers; there is no need for persistence. Note
that, as a generalization, big data applications might be consumers of
big stream data flows.

6.3 Big Stream 243

For these reasons, we present an architecture targeting cloud-based
applications with real-time constraints – big stream applications – for
IoT scenarios. It relies on the concepts of the data listener and the
data-oriented processing graph in order to implement a scalable,
highly configurable, and dynamic chain of computations on incoming
big streams and to dispatch data using a push-based approach, thus
providing the shortest delay between the generation of information
and its consumption.

6.3.1 Big-stream-oriented Architecture

As stated in Section 6.3, a major difference between big data and big
stream approaches is the real-time/low-latency requirements of big
stream consumers. The vast number of data sources in IoT applica-
tions has made cloud-service implementors mistakenly believe that
re-using big data-driven architectures will be the right solution for all
applications, and that there is no need to design new paradigms spe-
cific for IoT scenarios. IoT application scenarios are characterized by
a huge number of data sources sending small amounts of information
to a collector service, typically at a limited rate. Many services can be
built upon these data: environmental monitoring, building automa-
tion, and smart cities applications are just a few examples. These appli-
cations typically have real-time or low-latency requirements if they are
to provide efficient reactive/proactive behavior. This could be effec-
tively implemented in an IP-based IoT, where smart objects can be
directly addressed.

Applying a traditional big data approach for IoT application sce-
narios might bring higher or even unpredictable latency between
data generation and its availability to a consumer, since this was not
among the main objectives behind the design of big data systems.
Figure 6.3 illustrates the time contributions introduced when data
pushed by smart objects need to be processed, stored, and then polled
by consumers. The total time required by any data to be delivered to a
consumer can be expressed as T = t0 + t1 + t2, where:

• t0 is the time elapsed from the moment a data source sends infor-
mation, through an available API, to the cloud service (1) and the
service dispatches the data to an appropriate queue, where it can
wait for an unpredictable time (2), in order to decouple data acqui-
sition from processing.

244 6 Cloud and Fog Computing for the IoT

t0 t1 t2
wait

request

respond

lookupdispatch

Customer/Consumerprocess & storewait

m

n

DWAPI

IoT Networks

Applications

t1 = f (m, sizeof(DB))

ttot = t0 + t1 + t2

1

2
3

7

6

5
4

Figure 6.3 Traditional big data architecture for IoT and delay contributions from
data generation to applications information delivery. Refer to text for details.

• t1 is the time needed for data, extracted by the queue, to be pre-
processed and stored in data warehouse (DW) (3); this time depends
on the number of concurrent processes that need to be executed and
get access the common DW and the current size of the DW.

• t2 is the data consumption time, which depends on the remaining
time that a polling consumer needs to wait before performing the
next fetch (4), the time for a request to be sent to the cloud service
(5), the time required for lookup in the DW and post-processing of
the fetched data (6), and the time for the response to be delivered
back to the consumer (7).

It can be seen that the architecture described is not optimized to
minimize the latency – and, therefore, to feed (possibly a large number
of) real-time applications – but, rather, to perform data collection and
batch processing. Moreover, it is important to understand that data
significant for Big Stream applications might be short-lived, since they
are to be consumed immediately, while big data applications tend to
collect and store massive amounts of data for an unpredictable time.

In this chapter, we outline a novel architecture explicitly designed for
the management of big stream applications targeting IoT scenarios.
The main design criteria are the minimization of the latency in data
dispatching to consumers and the optimization of resource allocation.
The main novelty in the proposed architecture is that the data flow

6.3 Big Stream 245

is “consumer-oriented”, rather than being based on the knowledge of
collection points (repositories) where data can be retrieved.

The data being generated by a deployed smart object might be of
interest for a consumer application, termed the “listener”. A listener
registers its interest in receiving updates (either in the form of raw or
processed data) coming from a streaming endpoint (i.e., a cloud ser-
vice). On the basis of application-specific needs, each listener defines
a set of rules to specify what type of data should be selected and the
associated filtering operations. For example, in a smart parking appli-
cation, a mobile app might be interested in receiving content related
only to specific events (e.g., parking sensors status updates, the posi-
tions of other cars, weather conditions, and so on) that occur in a given
geographical area, in order to accomplish relevant tasks, such as find-
ing a free, covered parking spot. The pseudocode that can be used to
express the set of rules for the smart parking application is shown in
Listing 6.1:

Listing 6.1 Smart parking pseudocode.
when

$temperatureEvent = {
@type:http://schema.org/Weather#temperature}

$humidityEvent = {
@type:http://schema.org/Weather#humidity}

$carPositionEvent = {
@type:http://schema.org/SmartCar#travelPosition}

$parkingStatusEvent = {
@type:http://schema.org/SmartParking#status

}
@filter: {

location: {
@type:"http://schema.org/GeoShape#polygon",
coordinates: [[
[41.3983, 2.1729], [41.3986, 2.1729],
[41.3986, 2.1734], [41.3983, 2.1734],
[41.3983, 2.1729]

]]
}

then
<application logic>

The rules specify:
• what kinds of events are of interest for the application;
• a geographical filter to apply in order to receive only events related

to a specific area.

246 6 Cloud and Fog Computing for the IoT

Besides the final listener (end-user), the cloud service might also act
as a listener and process the same event data stream, but with differ-
ent rules, in order to provide a new stream that can be consumed by
other listeners. An example would be a real-time traffic information
application, the pseudo-code for which is presented in the following
listing:

Listing 6.2 Traffic information application pseudocode.

when
$cityZone = {@type:http://schema.org/SmartCity#zone}
$carPositionEvents = collect({

@type: http://schema.org/SmartCar#travelPosition,
@filter: {

location: cityZone.coordinates
}

}) over window:time(30s)
then

emit {
@type: http://schema.org/SmartCity#trafficDensity,
city_zone: $cityZone,
density: $carPositionEvents.size,

}

The proposed big stream architecture guarantees that, as soon as
data are available, they will be dispatched to the listener, which is thus
no longer responsible for polling data, thus minimizing latency and
possibly avoiding network traffic.

The information flow in a listener-based cloud architecture is shown
in Figure 6.4. With the new paradigm, the total time required by any
data to be delivered to a consumer can be expressed as:

T = t0 + t1 (6.1)

where:

• t0 is the time elapsed from the moment a data source sends infor-
mation, through an available API, to the cloud service (1) and the
service dispatches the data to an appropriate queue, where it can
wait for an unpredictable time (2), in order to decouple the data
acquisition from processing.

• t1 is the time needed to process data extracted from the queue and
be processed (according to the needs of the listener, say to perform
format translation) and then deliver it to registered listeners.

It is clear that the reversed perspective introduced by listener-oriented
communication is optimal in terms of minimization of the time that

6.3 Big Stream 247

t0 t1

l1

l2

l3

l4

m listener

process & notify

Applications

IoT Networks

DW

dispatch

API

wait
n Customer/Consumer

ttot = t0 + t1

1

2 3

Figure 6.4 The proposed listener-based architecture for the IoT: delay
contributions from data generation to consumer information delivery are
explicitly indicated.

a listener must wait before it receives data of interest. In order to
highlight the benefits brought by the big stream approach over a
big data approach, consider an alerting application, which should
notify one or more consumers of an event in the fastest possible
time. The traditional big data approach would require an unnecessary
pre-processing/storage/post-processing cycle to be executed before
the event could be made available to consumers, who would be
responsible to retrieve the data by polling. The listener-oriented
approach, on the other hand, guarantees that only necessary process-
ing will be performed before data are delivered directly to the listener,
thus providing an effective real-time solution.

This general discussion shows that a consumer-oriented paradigm is
better suited to real-time Big Stream applications than simply reusing
existing big data architectures, which best suit applications that do not
have critical real-time requirements.

6.3.2 Graph-based Processing

In order to overcome the limitations of the “process-oriented”
approach described in Section 6.2, and fit the proposed Big Stream

248 6 Cloud and Fog Computing for the IoT

Core Graph App. Graph

g4

g3

g2

g1

f2

f1

f6
f3

f4
f5

Applications

Customer/Consumer

IoT Networks

A
c
c
e
s
s

C
o
n
tr

o
l

DW

CoAP

MQTT

HTTP

Figure 6.5 The proposed listener-based graph architecture: the nodes of the
graph are listeners and the edges are the dynamic flow of information data
streams.

architecture, we have envisioned and designed a new cloud graph-
based architecture built on top of basic building blocks that are self-
consistent and perform “atomic” processing on data, but that are
not directly linked to a specific task. In such systems, the data flows
are based on dynamic graph-routing rules determined only by the
nature of the data itself and not by a centralized coordination unit.
This new approach allows the platform to be “consumer-oriented”
and to give optimal resource allocation. Without the need for a
coordination process, the data streams can be dynamically routed
in the network by following the edges of the graph. This allows the
possibility of automatically switching off nodes when processing units
are not required, or transparently replicating nodes if some process-
ing entity is overwhelmed by a significant number of concurrent
consumers.

Figure 6.5 illustrates the proposed directed-graph processing archi-
tecture and the concept of the listener. A listener is an entity (e.g., a
processing unit in the graph or an external consumer) interested in
the raw data stream or in the output provided by a different node in
the graph. Each listener represents a node in the topology and the pres-
ence and combination of multiple listeners, across all processing units,
defines the routing of data streams from producers to consumers. In
this architectural approach:

6.3 Big Stream 249

• nodes are processing units (processes), performing some kind of
computation on incoming data;

• edges represent flows of information, linking together various pro-
cessing units, which are thus together able to implement some com-
plex behavior;

• nodes of the graph are listeners for incoming data or outputs of
other nodes of the graph.

The graph-based approach allows resource allocation to be opti-
mized in terms of

• efficiency, by switching off processing units that have no listeners
registered to them (enabling cost-effectiveness)

• scalability, by replicating those processing units which have a large
number of registered listeners.

The combination of these two functionalities and the concept of
the listener allow the platform and the overall system to adapt itself
to dynamic and heterogeneous scenarios by properly routing data
streams to the consumers, and to add new processing units and
functionalities on demand.

In order to provide a set of commonly available functionalities, while
allowing for dynamic extension of the capabilities of the system, the
graph comprises several concentric levels:

• a core graph, with basic processing provided by the architecture
(e.g., format translation, normalization, aggregation, data correla-
tion, and other transformations);

• one or more application graphs, with listeners that require data
coming from an inner graph level in order to perform custom
processing on already processed data.

The complexity of processing is directly proportional to the num-
ber of levels crossed by the data. This means that data at an outer
graph level must not be processed again at an inner level. From an
architectural viewpoint, as shown in a scheme in Figure 6.6, nodes at
inner graph levels cannot be listeners of nodes of outer graph levels. In
other words, there can be no link from an outer graph node to an inner
graph node, but only vice versa. Same-level graph nodes can be linked
together if there is a need to do so. Figure 6.7 illustrates incoming and
outgoing listener flows between core- and application-graph units. In
particular, a processing unit of the core graph can be a listener only

250 6 Cloud and Fog Computing for the IoT

g2

g3

g4

g5

g6
g7

g8

g1

f6
f2

f3

f4

f5

f1

IoT Networks

Customer/Consumer

Applications

DW

(a)

g1f1

f2

f3

g2

g3 g6

g5

g4 g7

g8

g9

Complexity

(b)

Figure 6.6 (a) The concentric linked core and application graphs. (b) Basic
processing nodes build the core graph: the outer nodes have increasing
complexity.

n m

n m

f

g

Incoming Data

Listeners

from the Core Graph

Listeners

from the Core Graph and/or

Application Graph

Listeners to Core Graph or

Application Graph

Listeners to heterogenous

Consumers & Application

Outgoing Data

Figure 6.7 Allowed input and output flows for core-graph and application-graph
nodes.

6.3 Big Stream 251

for other nodes of the same level (n incoming streams) and a source
both for other core or application graph nodes (m outgoing streams).
A node of an application graph can be, at the same time:

• a listener to n incoming flows from core and/or application graphs;
• a data source only for other (m) nodes of the application graph or

heterogeneous external consumers.

6.3.3 Implementation

In this section, the functionalities and the details of the implemen-
tation of the proposed architecture using standard protocols and
open-source components are presented. Three main modules form
the system:

• acquisition and normalization of the incoming raw data;
• graph management;
• application register entity.

All modules and their relationships are shown in Figure 6.8.
A detailed explanation is given in the following sections.

6.3.3.1 Acquisition Module
The acquisition module represents the entry point, for external IoT
networks of smart objects, to the cloud architecture. Its purpose is
to receive incoming raw data from heterogeneous sources, making
them available to all subsequent functional blocks. As mentioned

Application Register

Data Sources

Graph

Framework

N
o
rm

a
liz

a
ti
o
n

A
c
q
u
is

it
io

n

Figure 6.8 Components of the proposed graph-based cloud architecture and
relations between each element.

252 6 Cloud and Fog Computing for the IoT

before about IoT models, several application-layer protocols can be
implemented by smart objects; adhering to this idea, the acquisition
module has been modeled to include a set of different connectors,
in order to be able to handle each protocol-specific incoming data
stream. Among the most common IoT application-layer protocols,
the current implementation of the acquisition module supports
HTTP, CoAP and MQTT. In order to increase scalability and effi-
ciency, in the module implementation an instance of NGINX [206]
has been adopted as an HTTP acquisition server node. The server
is reachable via the default HTTP port, working with a dedicated
PHP page as processing module. The latter has been configured to
forward incoming data to the inner queue server. We have chosen
NGINX, instead of the prevailing and well-known open-source
Apache HTTPD Server [207], because it uses an event-driven asyn-
chronous architecture to improve scalability and, specifically, aims to
guarantee high performance even in the presence of a critical number
of requests. The CoAP acquisition interface was implemented using
a Java process, based on a mjCoAP server instance [24], waiting for
incoming raw messages, and connected to the RabbitMQ queue
server,1 passing it injected elements. Indeed, since the proposed
architecture is big-stream-oriented, a suitable messaging paradigm is
queue communication, so in the developed platform an instance of
RabbitMQ queue broker was adopted. The MQTT acquisition node
is built by implementing an Apache Software Foundation ActiveMQ
server through a Java process that listens for incoming data over a
specific input topic (mqtt.input). This solution was preferred to other
solutions (e.g., the C-based server Mosquitto) because it provides a
dedicated API that allows custom development of the component.
The MQTT acquisition node is also connected to the architecture’s
queue server. In order to avoid potential bottlenecks and collision
points, each acquisition protocol module has a dedicated exchange
module and queue (managed by RabbitMQ), linked together with
a protocol-related routing key, ensuring the efficient management
of incoming streams and their availability to the subsequent nodes.
In the described implementation, an exchange is a RabbitMQ
component that acts as a router in the system and dispatches incom-
ing messages to one or more output queues, following dynamic
routing rules.

1 www.rabbitmq.com.

6.3 Big Stream 253

6.3.3.2 Normalization Module
Since incoming raw data are generally application- and theme-
dependent, a normalization module has been incorporated in order
to normalize all the collected information and generate a represen-
tation suitable for processing. The normalization procedure involves
fundamental and atomic operations on data, such as:

• suppression of useless information (e.g., unnecessary headers or
metadata);

• annotation with additional information;
• translation of payloads to a suitable format.

In order to handle the huge amount of incoming data efficiently, the
normalization step is organized with protocol-specific queues and
exchanges. As shown in the normalization section of Figure 6.9, the
information flow originated by the acquisition module is handled as
follows. All protocol-specific data streams are routed to a dedicated
protocol-dependent exchange, which forwards them to a specific
queue. A normalization process handles the input data currently
available on that queue and performs all necessary normalization
operations in order to obtain a stream of information units that
can be processed by subsequent modules. The normalized stream
is forwarded to an output exchange. The main advantage of using
exchanges is that queues and normalization processes can be dynam-
ically adapted to the current workload. For instance, normalization

Acquisition Normalization

CoAP

Exchange

CoAP

MQTT

HTTP

CoAP

Normalization

MQTT

Exchange

MQTT

Normalization

Core Exchange

Level 1

coap.event.in

mqtt.event.in

HTTP

Exchange

HTTP

Normalizationhttp.event.in

Figure 6.9 Detailed representation of acquisition and normalization blocks.

254 6 Cloud and Fog Computing for the IoT

queues and processes can be easily replicated to avoid system con-
gestion. Each normalization node has been implemented as a Java
process, analyzing incoming raw data extracted from a queue identi-
fied through a protocol-like routing key (e.g., <protocol>.event.in),
leaving unaltered the associated routing key, which identifies the
originator smart object’s protocol. The received data are fragmented
and encapsulated in a JSON-formatted document, which provides an
easy-to-manage format. At the end of the normalization chain, each
processor node forwards its new output chunk to the next exchange,
which represents the entry-point of the graph module, promoting
data flows to the next layers of the proposed architecture.

6.3.3.3 Graph Framework
The graph framework comprises a number of different computational
processes representing a single node in the topology; layers are linked
together with frontier exchanges, forwarding data streams to their
internal nodes.

Each graph node i of a specific layer n is a listener, waiting for an
input data stream on a dedicated layer-n exchange-connected queue.
If this node also acts as publisher, after performing its processing on
the input data, it can deliver computation results to the its layer-n
exchange. In order to forward streams, information generated by node
i become available for layer n and layer n + 1 listeners that are inter-
ested in this kind of data, thanks to the binding between layer-n and
layer(n + 1) exchanges.

Incoming messages are stored in active queues, connected to each
graph layer’s exchange. Queues can be placed into the core graph
layers, for basic computation, or into application graph layers, for
enhanced computation. Layers are connected through one-way links
to their successor exchange, using the binding rules allowed by the
queue manager, ensuring proper propagation of data flows and avoid-
ing loops. Each graph layer is composed by Java-based graph nodes
dedicated to process data provided by the graph layer’s exchange.
Such nodes can either be core, if they are dedicated to simple and
primitive data processing, or application, if they are oriented to a
more complex and specific data management.

Messages, identified with a routing key, are first retrieved from
the layer’s exchange, are then processed, and finally are sent to the
target exchange, with a new work-related routing key, as shown in
Figure 6.10. If the outgoing routing key belongs to the graph layer

6.3 Big Stream 255

Graph Framework
exchange binding @ application.rk.m.#

application.rk.m.alert

Input

Queue

Reader

Data

Filter
Output

Publisher
Processing

core.rk.n.zoneA

Core Layer n

Application Layer m

core.exchange.n application.exchange.m

Figure 6.10 Interaction between core and application layers with binding rule.

as the incoming message, the data remain in the same exchange and
become available for other local processes. If the outgoing routing
key belongs to an outer graph layer, then data are forwarded to the
corresponding exchange and finally forwarded, adhering to binding
rules. Each graph node, upon becoming part of the system, can specify
if it acts as a data publisher, capable of handling and forwarding data
to its layer’s exchange, or if it acts only as data consumer. Data flow
continues until it reaches the last layer’s exchange, which is responsi-
ble for managing notifications to external entities that are interested
in the final processed data, such as data warehouses, browsers, smart
entities, and other cloud graph processes.

6.3.3.4 Application Register Module
The application register module has the fundamental responsibilities:

• to manage the processing graph by maintaining all the information
about the current statuses of all graph nodes in the system

• to route data across the graph.

In more detail, the application register module performs the following
operations:

• attach new nodes or consumer applications interested in streams
provided by the system;

• detach nodes of the graph that are no longer interested in streaming
flows and eventually reattach them if required;

• deal with nodes that are publishers of new streams;
• maintain information regarding data topics, in order to correctly

generate the routing keys and to compose data flows between nodes
in different graph layers.

256 6 Cloud and Fog Computing for the IoT

Graph Framework

Process Process Process

Process

Process

(D) Detach(B) Status

POST PUT

Node Registration & Queue Manager

GET

(A3)

(A2)

(A5)

(A4)

(C)

Change

Publisher (A) Attach

Application Register

Queue Server

Graph State

(E) Reattach

(A1)

(A6)

(A7)

Figure 6.11 Detailed representation of the application register module, with
possible actions that may be performed by graph nodes, highlighting ATTACH
request steps needed to include an external node in the graph.

In order to accomplish all these functionalities, the application register
module is made up of two main components, as shown in Figure 6.11.

The first module is the graph state database, which stores all the
information about active graph nodes, such as their states, layers, and
whether they are publishers. The second module is the node registra-
tion and queue manager (NRQM), which handles requests from graph
nodes or external processes, and handles queue management and rout-
ing in the system. When a new process joins the graph as a listener, it
sends an attach request to the application register module, specifying
the kind of data that it is interested to. The NQRM module stores the
information of the new process in the graph state database and creates
a new dedicated input queue for the process, according to its prefer-
ences. Finally, the NRQM sends a reference of the queue to the process,
which becomes a new listener of the graph and can read the incoming
stream from the input queue.

After this registration phase, the node can perform new requests
(e.g., publish, detach, and get status). The overall architecture is man-
aged by a Java process (the application register), which coordinates
the interactions between graph nodes and external services, such as
the RabbitMQ queue server and the MySQL database. It maintains
and updates all information and parameters related to processing unit
queues. As a first step, the application register starts up all the external
connections, and then it activates each layer’s exchange, binding them

6.3 Big Stream 257

with their successors. Finally, it proceeds with the activation of a Jetty
HTTP server, responsible for listening and handling all core and appli-
cation node requests, as shown in Figure 6.11 using a RESTful HTTP
paradigm. These requests are:

• (A) attach
• (B) status
• (C) change publishing policy
• (D) detach
• (E) re-attach.

Figure 6.12 shows all of the architecture modules described above,
along with a detailed indication of the information flows.

6.3.4 Performance Evaluation

The implementation of the proposed graph framework for big stream
management was carried out by deploying an Oracle VirtualBox VM,
equipped with Linux Ubuntu 12.04 64-bit, 4 GB RAM, two CPUs and
10 GB HDD. The implemented architecture was evaluated through
the definition of a real use case: a smart parking scenario. The data
traces used for the evaluation of the proposed architecture were pro-
vided by WorldSensing from one of the company’s deployments in a
real-life scenario, used to control parking spots on streets. The traces
are a subset of an entire deployment (more than 10,000 sensors) with
information from 400 sensors over a three-month period, forming a
dataset with more than 604,000 parking events. Each dataset item is
represented by:

• sensor ID
• event sequence number relative to the specific sensor
• event timestamp
• parking spot status (free/busy).

No additional information about the parking zone was provided.
Therefore, in order to create a realistic scenario, parking spot sensors
were divided into seven groups, representing different parking zones
of a city. This parking-spot–city-zone association was stored in an
external database.

The parking dataset was used in the cloud infrastructure using a
Java-based data generator, which simulates the IoT sensor network.
The generator randomly selects an available protocol (HTTP, CoAP,

New Node

Layer 4
Layer 3

pu
bl

is
hLayer 2

Layer 1

Normalization
queues

Graph FrameworkNormalization

P
ro

to
co

l -
 s

pe
ci

fic
 c

on
ne

ct
or

s

Acquisition

P

P P P

PP

Application Register

Graph State

Node Registration
& Queue Manager

subscribe

Figure 6.12 The complete graph cloud architecture, with reference to the data stream flows between all building blocks, from IoT data
sources to final consumers.

6.3 Big Stream 259

or MQTT) and periodically sends streams to the corresponding
acquisition node interface. Once the data has been received by the
acquisition layer, they are forwarded to the dedicated normalization
exchange, where corresponding nodes enrich incoming data with
platform-specific details. With reference to the selected scenario,
the normalization stage adds parking zone details to the input data,
retrieving the association from an external database. Once the
normalization module has completed its processing, it sends the
structured data to the graph framework, allowing further processing
of the enriched data stream.

The graph framework considered in our experimental set-up com-
prises eight core layers and seven application layers, within which dif-
ferent node topologies are built and evaluated.

Processed data follow a path based on routing keys, until the final
external listener is reached. Each application node is interested in
detecting changes of parking-spot data related to specific parking
zones. Upon a change of the status, the graph node generates a new
aggregated descriptor, which is forwarded to the responsible layer’s
exchange, which has to notify the change event to external entities
interested in the update (free → busy, busy → free). The rate of these
events, coming from a real deployment in a European city, respects
some rules imposed by the company, and for our purposes might
seem low. Thus, in order to cause sufficient stress to the proposed big
stream cloud system, the performance was evaluated by varying the
data generation rate in a suitable range. In other words, we force a
specific rate of incoming events, without taking into account the real
parking spots timestamps gathered from the dataset.

The proposed architecture was evaluated using the testbed described
in Section 6.3.3, by varying the incoming raw data from 1 msg/s to
100 msg/s. The evaluation involved assessing the performance of the
acquisition stage and the computation stage. First, performance was
evaluated by measuring the time difference between the instant at
which data were sent from a data generator to the corresponding
acquisition interface and the instant at which the data were enriched
by normalization nodes, thus becoming available for processing
by the first core node. The results are shown in Figure 6.13. The
acquisition time slightly increased but it was around 15 ms at all rates
considered.

The second performance evaluation measured the time between the
instant at which enriched data became ready for processing activities

260 6 Cloud and Fog Computing for the IoT

0
14

14.5

15

15.5

16

16.5

17

20 40 60 80 100

Data generation frequency [msg/s]

T
im

e
 [
m

s
]

Figure 6.13 Average time related to the acquisition block.

and the instant at which the message reached the end of its graph
framework routes, becoming available for external consumers/cus-
tomers. In order to consider only the effective overhead introduced
by the architecture, and without considering implementation-specific
contributions, performance results were obtained by subtracting the
processing time of all core and application nodes. Finally, these times
were normalized over the number of computational nodes, in order
to obtain the per-node overhead introduced by the architecture, inde-
pendent of the specific routing and topology that were implemented.
The results, shown in Figures 6.14 and 6.15, were calculated using the
following expression:

Tprocessingfreq
=

Tout − Tin −
N∑

k=1
GPk

N
(6.2)

where: Tout is the instant at which parking data reach the last applica-
tion layer; Tin is the instant at which normalized data comes to the
first core layer; and GPk is the processing time for a graph process
k ∈ 1,… ,N .

Figure 6.14 shows how Tprocessing values grow with increasing the data
generation frequency (from 10 to 100 msg/s). Each curve is related to a
different graph topology. Figure 6.15 shows how Tprocessing values grow

6.3 Big Stream 261

20
0

50

100

150

200

250

300

350

400

450

25 30 35 40 45 50

Nodes [num]

T
im

e
 [

m
s
]

10 msg/sec
20 msg/sec
50 msg/sec
100 msg/sec

Figure 6.14 Average times related to graph framework processing block,
showing per-node time, varying data generation rate, for each subset of nodes
deployed into the graph topology.

10
0

50

100

150

200

250

300

350

400

450

20 30 40 50 60 70 80 90 100

Data generation frequency [msg/s]

T
im

e
 [

m
s
]

20 nodes
25 nodes
30 nodes
35 nodes
40 nodes
45 nodes
50 nodes

Figure 6.15 Average times related to graph framework processing block,
showing per-node time, varying the subset of nodes deployed into the graph
topology, for each evaluated data generation frequency.

262 6 Cloud and Fog Computing for the IoT

with increasing number of nodes in the graph topology (from 20 to 50
nodes). Each curve in Figure 6.15 is related to a different value of the
frequency.

6.3.5 Solutions and Security Considerations

The presented architecture is designed with reference to a specific
IoT scenario with strict latency and real-time requirements, namely
a smart parking scenario. There are several possible use cases and
applications fitting this scenario, alerting or real-time monitoring
applications.

Smart cities are encountering many difficulties in real-life deploy-
ments, even though obvious factors justify the necessity and the
usefulness of making cities smarter. Vilajosana et al. have analyzed
in detail the causes and factors that act as barriers in the process of
institutionalization of smart cities, and have proposed an approach to
make smart cities become a reality [208]. They advocate three different
stages in order to deploy smart cities technologies and services.

• The bootstrap phase: This phase is dedicated to offering services and
technologies that are not only of great use and genuinely improve
urban living, but also offer a return on investment. The important
objective of this first step is, thus, to set technological basis for the
infrastructure and guarantee the system has a long life by generating
cash flows for future investments.

• The growth phase: In this phase, the finances generated in the previ-
ous phase are used to ramp up technologies and services that require
large investments; these do not necessarily produce financial gains
but are only of great use for consumers.

• The wide adoption phase: In this third phase, collected data are
made available through standardized APIs and offered by all
different stakeholders to third-party developers in order to create
new services. At the end of this step, the system becomes self-
sustainable and might produce a new tertiary sector specifically
related to services and applications generated using the underlying
infrastructure.

With reference to the third phase, they propose three different busi-
ness models to handle the delivery of information to third parties.

• The app-store-like model: developers can build their apps using a set
of verified APIs after a subscription procedure that might involve a

6.4 Big Stream and Security 263

subscription fee. IoT operators can retain a small percentage of the
profits of apps published in the Apple Store and/or Android mar-
ketplace.

• The Google-Maps-like model: the percentage fee on the sales price
of an app is scaled according to the number and granularity of the
queries to deployed APIs.

• The open-data model: this model grants access to APIs in a classical
open data vision, without charging any fee to developers.

The architecture described in this paper is compatible with these
steps, and, more specifically, it can adopt the Google-maps-like
model, where infrastructure APIs make available different informa-
tion streams with different complexity layers. The graph architecture,
moreover, gives another opportunity to extend the business model, as
developers can use available streams to generate a new node of the
graph, and so publish a new stream for the system.

Another aspect, with a relevant impact on the business model, is
security. This entails both a processing module and interaction with
external entities. It is possible to adopt different policies related to
authentication and/or authorization on data sources, for example
based on well-known and standard solutions such as OAuth [175],
preventing malicious alterations of data streams and the resulting
negative consequences, which could affect both processing results
and platform reliability. At a final stage, security could be applied
for consumer accounting and authentication, ensuring appropri-
ate platform access only to authenticated/authorized entities, and
providing secure transactions with authorized entities via secured
communications.

Security features, including authorization, authentication and confi-
dentiality, should be integrated into the architecture, in order to make
the implementation complete and usable. Details about integration of
security features in the proposed big stream platform and its further
impact on the system performance are not included here.

6.4 Big Stream and Security

Several methods and strategies to enable confidentiality in publish/-
subscribe IoT infrastructures have been proposed. IoT systems have
to avoid security threats, providing strong security foundations built
on a holistic view of security for all IoT elements at all stages: from

264 6 Cloud and Fog Computing for the IoT

object identification to service provision; from data acquisition to
stream processing. All security mechanisms must ensure resilience to
attacks, data authentication, access control, and client privacy.

Collina et al. imagine IoT systems bridging the physical and the
“virtual” worlds, using a novel broker that supports protocols such
as HTTP and MQTT, adhering to the REST paradigm and allowing
developers to easily and responsively expose fundamental entities
as REST resources [209]. The broker does not address any security
issues, the authors claiming that possible solutions could include:
plain authentication; virtual private networks, access control lists, as
well as OAuth, a new type of authorization used to grant third parties
access to personal data (Hardt, 2012).

Lagutin et al. have examined the roles of different actors making
up an inter-domain publish/subscribe network [210]. They consider
the security requirements and minimal required trust associations
between entities, introducing and analyzing an architecture that
secures both data and control planes. They identify the main security
goals for a publish/subscribe architecture as:

• integrity
• scalability
• availability
• prevention of unauthorized traffic.

They identify different actors and security mechanisms. The main
mechanism is packet level authentication, which, combined with cryp-
tographic signatures and data identifiers tied to secured identifiers,
creates a strong binding between data and traffic, thus preventing
denial of service attacks.

Wang et al. deal with security issues by relying on the requirements
of a particular application and on an external publish/subscribe
infrastructure [211]. The general security needs of the applications
include confidentiality, integrity, and availability. In contrast, the
security concerns of the infrastructure focus on system integrity
and availability. Security issues in publish/subscribe platforms rely
on authentication, information integrity, subscription integrity,
service integrity, user anonymity, and information confidentiality, in
addition to subscription confidentiality, publication confidentiality,
and accountability.

Raiciu and Rosenblum have presented a study of confidentiality
in content-based publish/subscribe (CBPS) systems [212], defined

6.4 Big Stream and Security 265

as an interaction model storing the interests of subscribers in a
content-based infrastructure, to guide routing of notifications to
subjects of interest. In agreement with the Wang et al. approach
[211], confidentiality aspects are decoupled into two facets, namely
notification and subscription, suggesting that a confidential CBPS
(C-CBPS) must satisfy correctness and notification, whereas a
subscription CBPS must satisfy unforgeability and security, and
match isolation. A high-level approach to obtain C-CBPS by rely-
ing on notifications using simple blocks that may be controlled
and checked more easily than if they were completely encrypted,
is proposed.

Fremantle et al. have analyzed the use of federated identity and
access management in the IoT [213]. They follow a consumer-oriented
approach in which consumers own data collected by their devices,
and have control over the entities that access these data. Traditional
security models, based on the concept of roles in a hierarchical struc-
ture, are not applicable for IoT scenarios (because of the billions of
devices involved and thus the impossibility of adopting a centralized
model of authentication, and the necessity to support mechanisms
for delegation of authority). The authors therefore proposed OAuth2
[175] as a possible solution that could achieve access management
for IoT devices that support the MQTT protocol. The overall system
consists of:

• a MQTT broker
• an authorization server supporting OAuth2
• a web authorization tool
• a device.

Bacon et al. tackle the problem of application security in the cloud,
aiming at incorporating end-to-end security so that cloud providers
can not only isolate their clients from each other, but can also iso-
late the data generated by multiple users who access a particular ser-
vice provided by the cloud [214]. They propose an approach called
“application-level virtualization,” which consists of:

• removing from applications all details regarding security and flow
control;

• placing the security management logic in the cloud;
• allowing providers to permit only those interactions that the clients

specify,

266 6 Cloud and Fog Computing for the IoT

6.4.1 Graph-based Cloud System Security

Addressing the security problem in a graph-based cloud system
requires a broad approach, owing to different needs of the compo-
nents involved. In Figure 6.16, the main building blocks listed above
are shown. The main components, and their respective security
mechanisms, are indicated.

The enhanced graph architecture provides security by means of two
modules:

• The outdoor front-end security module (OFS) carries out security
operations that can be applied a priori, before receiving data from a
generic external source, as well as before a final consumer can start
interacting with the graph-based cloud platform.

• The in-graph security module (IGS) adopts security filters that can be
applied inside the heart of the graph-based cloud platform, so that
processing nodes are able to control access to the streams generated
by internal computational modules.

The OFS module is crucial for infrastructure safety: its role includes
monitoring access to the platform and authorizing information flows
coming from, or directed to, external entities. On one side, OFS must
verify and authorize only desired external input data sources, allowing
them to publish raw streams in the IoT system. On the other hand, OFS
is required to secure outgoing streams, generated by different layers of
the graph platform itself, authorizing external consumers to use, them.

Core Graph App. Graph

g1f1
f2

f6
f3

f5 f4

g2

g3

g4

ApplicationsOFSOFS

MQTT

CoAP

HTTP

...

...

Customer/Consumer

IoT Networks

DW

= IGS

Figure 6.16 Main building blocks of the proposed listener-based graph
architecture. Nodes in the graph are listeners, edges between nodes represent
dynamic flows followed by information streams. Edges can be “open” or “secured”.

6.4 Big Stream and Security 267

Consider, as example, the case of company C, which owns a set of
particular sensors, and wishes to become an IoT stream source for the
graph-based cloud platform. C wants:

• to sell sensed data only to a specific subset of customers, in order to
protect its commercial interests

• to make a profit from these sales.

Therefore, the OFS module is strictly related to sensors and devices at
the input side, and to customers’ smart objects at the output stage, so
that it becomes protocol-dependent and can be adapted to the specific
technologies supported by the target devices.

The IGS module is not related to the OFS module, as it acts
exclusively at the heart of the IoT graph architecture, coordinating
and managing inner inter-node interactions. The IGS module must be
implemented inside single processing nodes, enabling them to define
a set of rules that describe what entities may become listeners of a
generated stream.

Referring to the graph architecture, shown in Figure 6.16, edges in
the graph can be classified as follows:

• “Open” edges are data streams generated by core or application
nodes in the graph platform, which can be forwarded to all
interested listeners without need for isolation or access control.

• “Secured” edges are data streams that should comply with specified
rules or restrictions that determined the possible consumers of the
generated data.

As an example, consider again company C, which provides its sensors
as data sources and has notified the architecture that the streams pro-
duced by its sensors should be secured.

The integration of security modules in the IoT architecture entails
modifications in the structure and the modules of the (unsecured)
architecture previously described.

In the rest of this section, an analysis of each module in the graph
architecture is presented, in order to explain how security mechanisms
can be embedded and managed. In particular, we introduce the OFS
module, which supports the acquisition and normalization modules
on authorization of external entities. In addition, an enhanced ver-
sion of the application register is described in order to underline the
management of secure interactions with processing nodes. Finally, an
overview inside the graph nodes, analyzing how security is applied in
the processing stages, is presented.

268 6 Cloud and Fog Computing for the IoT

6.4.2 Normalization after a Secure Stream Acquisition
with OFS Module

The acquisition and normalization modules, shown in Figure 6.17,
represent the entry point for external sources (e.g., smart objects
deployed in different IoT networks) to the proposed architecture.

The purpose of the acquisition block is to receive incoming raw
data from heterogeneous sources, making them available to all sub-
sequent functional blocks. Since raw data are generally application-
and subject-dependent, the normalization block has to “normalize”
incoming data, generating a common representation, suitable for
further processing. This might involve suppression of unnecessary
data, data enrichment, and format translation.

After the normalization process, data are sent to the first core layer.
Within each graph layer, streams are routed by dedicated components,
called brokers. These are layer-specific and, in the current imple-
mentation of the architecture, are RabbitMQ exchanges. As stated
before, smart objects can communicate using different protocols. For
this reason, the acquisition block has to include a set of connectors,
one for each supported protocol, in order to properly handle each
protocol-specific incoming data stream.

As shown in Figure 6.17, these modules must cooperate with the
OFS module, which has to be activated before an external source is able
to operate with the graph platform. At the acquisition stage, in order

Acquisition Normalization

CoAP

OFS

raw data via CoAP

raw data via MQTT

Broker

HTTP

Normalization

MQTT

Normalization

CoAP

Normalization

raw data via HTTP

MQTT

HTTP

Figure 6.17 The OFS module manages security in the acquisition and
normalization blocks, interacting with an authentication storage entity
containing data source identities.

6.4 Big Stream and Security 269

for the proposed IoT platform to support both “open” and “secured”
communications, protocol-specific communication security mecha-
nisms have to be implemented at the relevant layers: at the network
layer through IPSec, at the transport layer through TLS/DTLS, at the
application layer through S/MIME or OAuth.

As stated before, the current implementation supports different
application protocols at the acquisition stage, namely MQTT, HTTP,
and CoAP. In order to secure all communications with these protocols,
we need to introduce different protocol-specific policies. Fremantle
et al. proposed an OAuth-based secure version of the MQTT protocol
[213], showing that MQTT also complies with an n-legged OAuth
protocol.

The proposed IoT platform provides a good way to authenticate
external data providers, adopting open-source and well-understood
solutions. The OFS module can be secured by OAuth, used in ways
dependent on the specific communication protocols supported by the
heterogeneous IoT smart objects.

A suitable solution to provide authorization in IoT scenarios is
IoT-OAS, as presented in Section 5.3.2, which represents an autho-
rization framework to secure HTTP/CoAP services. The IoT-OAS
approach invokes an external OAuth-based authorization service
(OAS). This approach is meant to be flexible, highly configurable, and
easy to integrate with existing services, guaranteeing:

• lower processing loads than solutions with access control imple-
mented in the smart object;

• fine-grained (remote) customization of access policies;
• scalability, without the need to operate directly on the device.

Returning to the previous example, company C, to became a secured
IoT data source, selects one of the supported protocols (HTTP, CoAP
or MQTT) to send raw data streams in the secured version.

6.4.3 Enhancing the Application Register with the IGS
Module

One of the main motivations for securing a system internally is the
need to secure some of its operations, as well as to isolate some pro-
cessing steps of the entire stream management. The security features
should be coordinated by the application register module, which main-
tains and manages interactions between inner graph nodes of the IoT

270 6 Cloud and Fog Computing for the IoT

Security Rules

Ψ

Graph State

Security Manager

POST PUT

Graph

Layer

n+1

ID

(S) Interests

(P) Rules

Auth pm

on

interestk

OK

GET

Queue Server

PMSV

Graph Framework

GRAN

Application Register

Node Registration & Queue Manager

gn

pm

Figure 6.18 The application register module structure with security elements.
PMSV and GRAN modules interact with a storage entity to manage authorization
in the graph.

platform using different communication protocols, as requested by the
architecture itself.

In order to accomplish the operational functionalities listed previ-
ously, the application register module has two main components, as
shown in Figure 6.18.

• The graph state database is responsible to maintain all information
about the current graph status. Since this component is not critical
from a performance viewpoint, it has been implemented through a
simple relational SQL database.

• The node registration and queue manager (NRQM) module is
responsible for managing communications with existing graph
nodes, as well as with external entities that ask to join the big
stream architecture.

To add security features to these modules, the application register
defines entities and modules specifically related to security manage-
ment and coordination. As shown in Figure 6.18, the application reg-
ister comprises the following additional modules:

• The policy manager and storage validator (PMSV) is responsible
for managing and verifying authorization rules, interacting with the
persistent storage element, which maintains authorization policies.

• The graph rule authorization notifier (GRAN) interacts with pub-
lisher graph nodes and verifies if listener nodes are authorized to
receive streams associated with specific topics.

6.4 Big Stream and Security 271

• A persistent storage entity (e.g., a non-relational database) maintains
authorization rules specified by publisher graph nodes.
If a processing node pm asks to register with the IoT platform,

requiring it to join the graph, after authentication (e.g., using a
username/password pair, cryptographic certificates, ACLs, OAuth)
there are two cases that require the use of security mechanisms and
involve the defined modules:
• a registration request coming from a node that is willing to become

a publisher node for a secured stream (e.g, an application node cre-
ated by developers of company C);

• a registration request sent by a node, asking to be attached as a lis-
tener for some streams.
In the first case, when an external process pm requests to register

to the graph architecture, in order to secure one or more of its own
streams, it updates the PMSV module. After indicating its published
topics, it specifies some policies and rules, to be stored, together with
the assigned operative graph layer, in the persistent security storage by
PMSV itself. These rules will be checked in case of future subscription
requests for the node.

In the second case, an external process pm, upon issuing a request
to attach to the graph platform and to become a node, provides
information related to its identity and also specifies the interests to
which it wants to subscribe. The application register, having identified
the graph layer into which the new node could be placed, takes charge
of these interest specifications, passing then to the PMSV, which acts
as follows.

For each provided interestk , the PMSV module interacts with the
persistent storage entity, performing a lookup for a match between the
interest and stored publishing policies, and refining this lookup with
layer matching:

match = {layer = x OR layer = (x + 1)} AND
{interestk ∈ Ψ} (6.3)

where x stands for the identified listener graph layer; indicates each
single specified interest, extracted from the attaching request; repre-
sents the persistent storage element; and contains a list of publisher
nodes that have to authorize subscriptions.

If match contains some positive results (e.g., gm node – a node
in the graph), these are forwarded to the GRAN module, which

272 6 Cloud and Fog Computing for the IoT

interacts with discovered publisher nodes, sending them the identity
of the requesting listener node and asking them to allow or deny
subscription to the requested topics. This response is sent back to
the GRAN module, which analyzes it and, in compliance with the
application register, authorizes or rejects the listener graph node
subscription.

In order to better explain the behavior of the application register
module in relation to the join operation of an external entity that asks
to become a graph listener, in Listing 6.3 we detail the interactions
involved through a pseudocode representation.

Listing 6.3 Pseudocode representation of the operations of the application reg-
ister when an external process asks to become a graph listener in the big stream
architecture.

NodeIdentityCertificate = {
NodeInfo = {....};
INTERESTS = {interest_1, interest_2, ..., interest_N};

}
MAIN() {
Pm = receive_join_request(NodeIdentityCertificate);
authenticated = authenticate_node(Pm);
if (authenticated is TRUE) {

x = identify_graph_layer_for_node(Pm);
foreach (interest interest_k in INTERESTS) {
Match = send_request_to_PMSV(layer = (x OR x+1),

interest = interest_k);
if (Match is EMPTY) {

REPLY_DENY(topic = interest_k,
destination_node = Pm);

}
else {

foreach (GraphNode Gm in Match) {
allow = request_grant_to_owner_via_GRAN(topic =

interest_k, owner = Gm, listener = Pm);
if (allow is FALSE) {
REPLY_DENY(topic = interest_k,

destination_node = Pm);
}
else {
REPLY_SUCCESS (topic = interest_k,

destination_node = Pm);
}

}
}

}
}

}

6.4 Big Stream and Security 273

REPLY_DENY(topic, destination_node) {
send_DENY_response_to_destination(required topic = topic);

}
REPLY_SUCCESS(topic, destination node) {
send_SUCCESS_response_to_destination(required topic =

topic, security_parameters = (....));
}

The processing nodes in the graph architecture can be both listeners
and publishers at the same time, so that the previously detailed mecha-
nisms can be applied together, without any constraint on the execution
order. The flows shown in Figure 6.18 represent the interactions in
this mixed case. The rule on node authority, restricted to the same
layer and to the next one, decreases lookup times in rule matching
execution.

Moreover, external smart object producers could also request a
totally “secured” path, from source to final consumer. These con-
straints have a higher priority than policies defined by publisher graph
nodes, being specified by the stream generators. In this way, these
external priority rules are stored in the persistent storage elements
as well, and when a new graph node registers to the proposed IoT
platform, its graph-related policies are left out, and it is forced to
comply with the external rules.

6.4.4 Securing Streams inside Graph Nodes

The graph framework comprises several processing entities, which
perform various computations on incoming data, and each represent-
ing a single node in the graph topology. The connection of multiple
listeners across all processing units defines the routing path of data
streams, from producers to consumers. All nodes in the graph can be
input listeners for incoming data and output producers for successor
graph nodes.

Since each graph node is the owner of the stream generated by its
processing activity, it is reasonable to assume that it could decide
to maintain its generated stream “open” and accessible to all its
interested listeners, or to applying security policies, isolating its own
information and defining a set of rules that restrict the number of
authorized listener nodes. In this latter case, a “secure” stream is
created and encrypted using algorithms selected by the owner. Each
listener is thus required to decrypt incoming data before performing
any processing. These encryption/decryption operations can be

274 6 Cloud and Fog Computing for the IoT

Graph Framework

Core Layer n

Application Layer m

Input Queue
Decipher Cipher

Broker

Processing

Input

Queue

Listener

Data

Filter
Output

Producer

Figure 6.19 Detail of the structure of a single graph node: the decryption module
is activated when the node is a listener of a secured stream, while the encryption
module is activated if the node generates a secured stream.

avoided if listeners adopt homomorphic encryption [], allowing them
to carry out computations on ciphertext, instead of on plaintext.
This generates an encrypted result that matches one performed on
the plaintext, but without exposing the data in each of different
steps chained together in the workflow. Homomorphic encryption
allows computation to be executed in the encrypted domain, thus
providing end-to-end security, and avoiding the need for hop-by-hop
encryption/decryption.

In Figure 6.19, the modules inside a graph node are shown: the bro-
ker of the core layer forwards streams to interested graph nodes, plac-
ing these data in the input queues of each. The output stream generated
by the processing of these nodes, will be sent to the same broker in the
core layer, which is linked to the broker of the next graph layer, and
which “spreads” generated streams to all interested nodes. Some of
these modules will be activated only in specific situations. In partic-
ular, the node illustrated acts as a listener of a “secured” data stream,
so it has to decrypt an incoming message, activating the decryption
module. It also acts as a producer of a “secure” stream and so it has to
encrypt its processed streams with the encryption module before for-
warding it, thus hiding the stream from unauthorized listener graph
nodes. This is the case in the earlier example in which a graph node
that is already a listener of the secured stream owned by company C,
wants to secure the stream generated by its processing.

It is important to point out that each graph node controls its gen-
erated flow, with visibility of only one step. This means that a listener
of a “secured” flow can publish an “open” stream and vice versa, thus
producing “hybrid” path combinations. These, in the stream flow from

6.4 Big Stream and Security 275

Table 6.1 Comparison between graph framework actors and OAuth roles.

Graph framework actor OAuth role

Publisher graph node, owner of the outgoing data stream Resource owner
Listener graph node, willing to subscribe to interested
topics

Consumer

Infrastructure routing element (broker in a pub/sub
paradigm)

Provider

IoT source to final consumer, produce a combination of “secured” and
“open” steps.

Referring to the example in which company C generates a “secured”
stream of data coming from its sensors, an IoT developer might decide
to create a new graph node listening to both the secured stream of
company C and the stream of another company, D. In the processing
unit of the new graph node, the developer can aggregate and transform
the input streams, generating new and different output streams, which
can be published in “open” mode, since the developer is the owner of
this new produced stream. Depending on the inner organization of the
IoT architecture, there could be a parallel between actors enrolled in
the graph framework and OAuth roles, as illustrated in Table 6.1.

More precisely, OAuth roles could be detailed as follows.

• Resource owner: the entity that owns the required resource and has
to authorize an application to access it, according to authorization
granted (e.g., read/write permission).

• Consumer:the entity that wants to access and use the required
resource, operating in compliance with granted policies related to
this resource.

• Provider: the entity that hosts the protected resource and verifies
the identity of the consumer that issues an access request to this
resource.

As previously stated, each graph node can apply cryptography to
its streams, using encryption and decryption modules. The security
mechanisms leave a few degrees of freedom to developers, who
can adopt their own solutions (e.g., using OAuth tokens) to secure
streams, or rely on standard secure protocols, thus adopting well-
known and verified solutions. An overall view of the envisioned IoT
architecture is shown in Figure 6.20, showing all component modules
and their interactions.

Acquisition Normalization

Normalization

Normalization

Normalization

Normalization

Normalization

raw data

raw data

raw data

raw data

raw data

Graph Framework

CoAP

MQTT

HTTP

OFS
OFS

DW

= IGS

IoT Networks
…

…

f1
f2

f6
f3

g2

g1

g3

g4
f5 f4

Core Graph

PMSV
Security Rules

Graph State

Queue Server

POST PUT GET

GRAN

Application Register

Security Manager

Node Registration & Queue Manager

App. Graph

Customer/Consumer

Applications

Figure 6.20 Complete IoT cloud architecture, including proposed security modules and showing different interactions, from incoming
stage to final consumer notification.

6.4 Big Stream and Security 277

6.4.5 Evaluation of a Secure Big Stream Architecture

The evaluation involves a Java-based data generator, which:

• simulates events arrivals from IoT sensors networks;
• randomly selects an available protocol (HTTP, CoAP, MQTT);
• periodically sends streams to the corresponding interface in the

acquisition module.

Once received, data are forwarded to the dedicated normalization
module, which enriches them with parking membership information
from an external SQL database. The module structures the stream
in a JSON schema compatible with the architecture. Once it has
completed its processing, it sends the structured data to the graph
framework, which forwards the stream following paths based on
routing keys, until the final external listener is reached. The graph
considered in our experimental set-up comprises eight core layers
and seven application layers, within which different graph topologies
(from 20 to 50 nodes) are built and evaluated.

The proposed architecture was evaluated by varying the incoming
data stream generation rate between 10 msg/s and 100 msg/s. The
first evaluation, which represents a benchmark for our performance
analysis, uses the platform without security mechanisms. Then,
security mechanisms were introduced into the graph framework
module, in order to assess the impact of a security stage on the overall
architecture.

The first performance evaluation was conducted by measuring the
delay between the time when normalized data were injected into
the graph framework and the time instant at which the message
reached the end of its routing, becoming available for external
consumers/customers. In order to consider only the effective over-
head introduced by the architecture, and without taking into account
implementation-specific contributions, performance results were
obtained by subtracting the processing time of all core and application
nodes. Finally, these times were normalized over the number of
computational nodes, in order to obtain the per-node overhead
introduced by the architecture, in a way that is independent of the
implemented routing and topology configuration.

The second performance evaluation adopted the same structure as
the unsecured implementation, but introduced security mechanisms
inside graph nodes, through the adoption of symmetric encryption to

278 6 Cloud and Fog Computing for the IoT

encrypt/decrypt operations, as described in Section 6.4.4. In order to
guarantee a tradeoff between security-level and reliability, we chose
the Advanced Encryption Standard (AES), which is a symmetric
cryptosystem, in its 256-bit key version [117]. AES is a block cipher
based on a substitution and permutation (SP) combination, working
on 128-bit blocks. The chosen key size determines the number of
repetitions of transformation rounds that convert the input, applying
several processing stages and depending on the encryption key. The
strength of AES256 derives from its key space – a possible 256-bit
key – which affects the time needed to made a successful brute-force
attack on a system in which it is implemented.

In the second evaluation, we also implemented a new version of
the processing core and application nodes, applying security at both
input and output stages of the single graph node, with the following
behavior:

• If the processing node has received an AES 256-bit decryption key
from the application tegister, it then uses this key to decrypt incom-
ing messages, returning plaintext useful for processing operations.

• If an AES 256-bit encryption key was provided by the application
register to a graph node, it then encrypts the processed stream using
this key, before forwarding the stream to the relevant exchange.

This security model is also applicable also to the example in which
company C would like to secure its paths into the graph framework.
In the second evaluation, encryption and decryption keys were pro-
vided to all graph nodes, in order to secure all the intermediate steps
followed by streams owned by the company.

Different topologies were obtained by varying the subset of nodes
deployed, from 20 to 50, and the data generation rate, from 10 msg/s
to 100 msg/s. The results are shown in Figure 6.21.

The stream delay can be given using the following expression:

Tprocessingfreq
=

Tout − Tin −
N∑

k=1
GPk

N
(6.4)

where Tout is the instant at which parking data reach the last appli-
cation processing node; Tin indicates the instant at which normalized
data comes to the first core layer; and GPk is the processing time of a
graph node k ∈ {1,… ,N}.

6.4 Big Stream and Security 279

NoEncryption - Rgen = 10 msg/s

NoEncryption - Rgen = 20 msg/s

NoEncryption - Rgen = 50 msg/s

NoEncryption - Rgen = 100 msg/s

AES256 - Rgen = 10 msg/s

AES256 - Rgen = 20 msg/s

AES256 - Rgen = 50 msg/s

AES256 - Rgen = 100 msg/s

350

300

250

200

150

100

50

0
20 25 30 35 40 45 50

Nodes [num]

T
im

e
 [
m

s
]

Figure 6.21 Average stream delay (ms) related to graph framework processing
block, showing per-node time, in the case of unsecured communication as well as
the case of adoption of symmetric encryption.

In order to investigate the benefits and drawbacks of security
solutions other than symmetric encryption, we implemented an
asymmetric-cryptography version of the graph processing nodes,
adopting RSA [132] with a 512-bit key. This is a private-public key
cryptosystem. In a third evaluation scenario, the symmetric cryp-
tosystem was replaced with private/public RSA certificates provided
to the graph nodes by the application register module.

The results, in terms of stream delay, are shown in Table 6.2. They
highlight that an asymmetric cryptosystem is a bad choice for graph
inter-node security. Asymmetric solutions might be adopted outside
of the graph nodes, when an external node is willing to become an
operating entity of the graph framework, challenging an authentica-
tion transaction with its signed certificate, which allows for verifica-
tion of its identity by the application register. Therefore, in the joining
phase, asymmetric solutions could be used if time is not the main
constraint.

280 6 Cloud and Fog Computing for the IoT

Table 6.2 Average stream delay related to the adoption of
asymmetric encryption solution (RSA) into the graph
framework processing block.

Number of nodes Stream delay (ms)

Message rate (msg/s) 50 100

20 128 10890
25 156 12962
30 2783 13841
35 10104 14048
40 11283 14515

In order to better highlight this final analysis of the evaluation
results, in Figure 6.22 a logarithmic-scaled version of the results is
shown, evaluating the logarithm of the stream delay as a function of
the number of nodes in the graph for:

• no encryption,
• symmetric encryption (AES256)
• asymmetric encryption (RSA512).

Warning

region

Forbidden

region

Working

region

20
1

2

3

4

5

6

7

8

9

10

25 30

Nodes [num]

L
n
(P

e
r-

N
o
d
e
 T

im
e
)

35 40

NoEncryption - Rgen = 50 msg/s

NoEncryption - Rgen = 100 msg/s

AES256 - Rgen = 50 msg/s

AES256 - Rgen = 100 msg/s

RSA512 - Rgen = 50 msg/s

RSA512 - Rgen = 100 msg/s

Figure 6.22 Logarithmic representation of the stream delay as a function of the
number of nodes of the graph, evaluated both with and without security
mechanisms.

6.5 Fog Computing and the IoT 281

Two values of data generation rate were used: 50 and 100 msg/sec.
The results suggest that there are three main performance regions

in which the proposed big stream platform could be considered:

• the working region, approximately around the “NoEncryption”
curves, for which the system has the benchmark results, and where
processing does not introduce heavy delays;

• the “Warning” region, around the AES256 curves, in which delays
introduced by security steps degrade performance a little, while
maintaining good quality of service (QoS);

• the “Forbidden” region, around the RSA512 curves, in which the
system incurs major delays, which may cause crashes and dropping
of service, invalidating QoS and any service level agreements (SLAs)
signed with data stream producers and consumers.

6.5 Fog Computing and the IoT

The role of cloud computing in the IoT is gaining more and more
attention. Most research has so far been focused on smart objects,
and in particular on the definition of efficient, lower-power, IP-based
communication protocols and mechanisms. Many of these areas
have now been significantly addressed. IoT solutions have been
deployed and brought to the market in several application scenarios,
from home automation to smart cities. Most of these fragmented
and vertical solutions rely on the cloud to provide centralized
access to services exploiting data that are sent uplink from deployed
sensors to cloud storage. Typically, mobile apps “consuming” such
services are made available to end-users. However, this approach,
which is useful for the IoT, does not fully exploit the potential of
the cloud.

Fog computing, also referred to as “Edge Computing”, is a novel
paradigm that was introduced to meet requirements such as mobility
support, low latency, and location awareness [205]. Fog computing
aims to moving some cloud-based computation and storage to the
edge of the network. The fog is a cloud close to the ground and,
as such, provides end users with computing functionality that is
closer to them, thus improving performance. It brings low-latency to
consumers and enables development of new applications that take
into account location-related information.

282 6 Cloud and Fog Computing for the IoT

The characteristic features of fog computing are the following:

• wide geographical distribution, in contrast to the centralization
envisioned with the cloud;

• subscriber model used by the players in the fog;
• support for mobility.

Fog computing brings a new approach to Internet access networks
by making computation, storage, and networking resources available
at the edge of access networks. This improves performance, minimiz-
ing latency and maximizing availability, since resources are accessible
even if Internet access is not available [215].

Fog-based solutions aim at introducing an intermediate architec-
tural layer in which resources and applications are made available in
the proximity of end devices, thus avoiding the need for continuous
access to the cloud. While cloud-only architectures can provide a solu-
tion to scalability and flexibility issues by distributing resources among
multiple servers, this approach has some weaknesses, such as:

• latency
• availability/dependence on Internet connectivity for operations
• lack of flexible networking
• quality of service/experience
• security and privacy.

Due to its benefits over cloud-based architectures, especially if time is
a critical issue or Internet connectivity is poor or absent, fog comput-
ing is expected to play a key role in the deployment of IoT applications.
The fog is not intended to replace the cloud, but rather to comple-
ment it, in order to provide location-aware and real-time services, thus
enabling new applications that could have not been deployed other-
wise.

Fog-based access networks are based on the presence of highly
specialized nodes, called fog nodes, which are able to run distributed
applications at the edge of the network. In particular, the deployment
of computing resources on Internet access networks allows for
dynamic activation of Virtual Machines (VMs) on fog nodes. For this
reason, the cloning and synchronization techniques of VMs at the
core of this work fit perfectly into Fog-based infrastructures, as will
be discussed in more detail in the following sections.

The proposed architecture can protect local resources by providing
remote access to their replicas in a transparent way. Local resources

6.6 The Role of the IoT Hub 283

are kept synchronized by multiple clones of the same machine, thus
achieving a high level of reliability and load balancing. Smart manage-
ment of the activation/deactivation of replicas and the choice of the
most appropriate fog node to run the clone allows for optimization of
the usage of CPU and memory on the infrastructure, according to the
specific real-time resource requirements of the applications involved.

A lightweight alternative to VMs are containers, which provide a
more flexible environment for “disposable applications” like the IoT
Hub. Container platforms like Docker [216] are gaining increasing
attention for fog computing applications. Moving from a centralized
to a decentralized paradigm enables processing to be offladed to the
edge, reducing application response times and improving overall user
experience. This process will play a fundamental role in IoT.

Several authors have described how a container-based architec-
ture could be efficiently used for dynamic networking applications
[217, 218]. Ramalho and Neto have compared existing lightweight
and hypervisor-based approaches for edge computing and presented
an efficient networking approach [219]. Morabito has presented
a novel approach to the application of a lightweight virtualization
technology (such as Docker) to constrained devices with a negligible
overhead [220].

In this work a containerized version of the IoT Hub, based on
Docker, will be considered.

6.6 The Role of the IoT Hub

The billions of IoT sensing/actuating devices in the IoT will gener-
ate an unprecedented amount of data, which will need to be man-
aged properly in order to provide highly available and robust services.
Although an IP-based IoT would make it possible to address smart
objects directly, the following potential drawbacks exist:
• In order to extend their battery lifetimes, smart objects may be

duty-cycled and thus not always accessible.
• Smart objects might be unable to handle a large number of con-

current requests, thus leading to service disruption and becoming
possible targets for denial-of-service attacks.

• In some circumstances (for instance, to minimize memory footprint
when the available in-device memory is critically low), smart objects
may play the role of clients rather than servers.

284 6 Cloud and Fog Computing for the IoT

IEEE 802.15.4 IEEE 802.11 Bluetooth

Heterogeneous Networks

Consumers

IoT Hub

Figure 6.23 The IoT
nub can manage
multiple networks of
heterogeneous smart
objects and enables
access to resources by
external consumers
that should not be
aware of the ow-level
details of
communications.

In all the above cases, the presence of an intermediate network
element operating at the application layer – typically the border
router – is desirable. Such a node could integrate several function-
alities that would reduce the processing load on smart objects and
help overcome some of the problems discussed above (e.g., caching).
This resourceful node, called the IoT Hub is shown in Figure 6.23.
It helps move some of the processing load towards the edge of the
network, following the fog computing paradigm [205]. Even though
this approach will surely bring several benefits, the role of the IoT
Hub then becomes central in the IoT architecture foreseen, since it
will be responsible for processing all requests.

As billions of smart objects are expected to be deployed, efficient
data processing has led to reliance on the cloud. The expression “Cloud
of Things” is sometimes used to refer to the interaction between IoT
and the cloud [221]. Aazam et al. have set out an architecture for inte-
grating the cloud and the IoT is proposed, based on a network element
called a smart gateway [222]. This is intended to act as intermediary
between heterogeneous networks and the cloud. The role of the smart
gateway is similar to that of the IoT Hub, in terms of supporting sev-
eral heterogeneous networks. However, the role of the cloud is mainly
envisioned as being for data aggregation and storage, and usable by
end-users to access data. In this approach, data are sent uplink, mak-
ing it impossible to directly address and act on response from smart
objects, as is supposed to happen in the IoT.

6.6 The Role of the IoT Hub 285

At the opposite extreme, in the current paper we envision that the
cloud, by hosting replicas of the IoT Hub, is used to give direct and
efficient access to resources, while providing desirable features such
as seamless access by external clients, security, and high availability.

6.6.1 Virtualization and Replication

In order to increase the robustness of an hub-oriented IoT architec-
ture, we propose a cloud-supported replication mechanism for IoT
Hubs in order to efficiently manage CoAP resources in a scalable and
secure way. The proposed mechanism uses cloud platforms to clone
and virtualize IoT Hubs. The replicas are full copies of the IoT Hubs
and so implement all their functionalities. Accessing the replicas is
therefore like asking a delegate for the same information. This brings
several benefits:

• A unique cloud-based interface for accessing resources is exposed.
• The actual implementation details of the IoT Hub are hidden from

communications, thus protecting the IoT Hub and the smart objects
behind.

• The cloud platform may introduce balancing policies in order to
scale up or down the number of replicas according to current needs
and the number of incoming/estimated requests and resources to
be managed.

This solution enables remote access to resources in networks in a fully
transparent and standardized way. In order to achieve our goals, a new
application layer for IoT networks is designed and developed. In par-
ticular, we focus on the design of an architecture that allows access by
external clients, by virtualizing the functionalities of an IoT network.
The details of the IoT network, such as its location or its actual imple-
mentation, are kept hidden from users and external clients seeking to
access resources. In other words, resource access by remote clients
will be mediated by the cloud platform, which provides a standard and
secure front end.

6.6.1.1 The IoT Hub
The IoT Hub does not have the same strict requirements on energy
consumption and processing capabilities as other smart objects and
it is thus useful to provide relevant features to a constrained network.
The IoT Hub is placed at the edge of the constrained network and plays

286 6 Cloud and Fog Computing for the IoT

Application

Layer

Transport

Layer

Network

Layer

Physical/Link

Layer

Protocol stack Functional plane

Border Router

IP

CoAP HTTP MQTT
Resource

Directory
Cache

C2C

Proxy

H2C

Proxy

Replica

Manager

UDP TCP

IEEE 802.15.4 IEEE 802.11...

Figure 6.24 Protocol stack and functional modules implemented by an IoT Hub.

a fundamental role by implementing the functions – summarized in
the functional plane and mapped in the protocol stack – shown in
Figure 6.24.

• LoWPAN border router: at the network layer, the IoT Hub is the gate-
way between one or more constrained networks (e.g., IEEE 802.15.4)
to which it belongs (via its radio interfaces).

• CoAP/CoAP (C2C) proxy: at the application layer, this provides
proxying capabilities for CoAP requests coming from external
clients that should reach internal constrained nodes.

• HTTP/CoAP (H2C) proxy: at the application layer, this provides
cross-proxying (protocol translation) between HTTP and CoAP in
order to let external HTTP clients access CoAP resources hosted
by smart objects.

• Resource directory: the IoT Hub maintains a list of all CoAP
resources available in the constrained network. These resources may
have been gathered through several mechanisms, such as those
described in Chapter 4.

• Cache: in order to avoid unnecessary load on smart objects and to
minimize latency, a cache is kept with a representation of the most
recently accessed resources.

• Replica manager: this is a software module responsible for the coor-
dination of and synchronization between the IoT Hub and its repli-
cas.

Due to the constrained nature of smart objects, they cannot typi-
cally implement strong security mechanisms and access policies, for
instance those related to authorization, in which the IoT Hub may act

6.6 The Role of the IoT Hub 287

as a filter for incoming requests in order to limit access to specific
resources. Because of all the functionalities outlined above, the IoT
Hub may suffer from the following critical issues, which may under-
mine the lifecycle of a constrained IoT network:

• The IoT Hub is a bottleneck of the architecture, since all traffic must
pass through it even if it is not a communication endpoint.

• Failure of the IoT Hub would make the resources hosted by smart
objects temporarily or permanently unavailable.

It is necessary to relieve the IoT Hub from some of this load in order
to guarantee that resources can be accessed with high availability in a
secure and seamless way.

In this section, we propose an approach that relies on on the cloud
to provide virtual replicas of the IoT Hub. Replicas of the IoT Hub are
fully functional clones, which may be used by any external client to
access resources in the same way as they would do with the actual IoT
Hub. Interacting with resources through the replicas gives an access
point that is different from the real (physical) IoT Hub, thus decoupling
the constrained network management function and granting access to
external clients.

Replicas of the IoT Hub are synchronized through a dedicated
MQTT-based protocol, which is used to transfer copies of the
resources from the IoT Hub to the replicas in a pub/sub model.
Replicas can be instantiated on the fly, according to particular needs,
thus also acting as load balancers (according to policies which may
depend on the number of connected clients and smart objects) and
as recovery facilities in the event of temporary failure of the real
IoT Hub.

6.6.1.2 Operational Scenarios
Resource access through the proposed cloud-based platform can
occur according to the following three operational models imple-
mented by a smart object:

• CoAP server
• observable CoAP server
• CoAP client.

Polling Resources
If the smart object is a CoAP server, it can receive requests to access
its hosted resources. In this case, as shown in Figure 6.25, the message

288 6 Cloud and Fog Computing for the IoT

4

5
6''

6'

67

8

1

2

HTTP/CoAPHTTP/CoAP

3

CoAP

S.O.

(Server)

IoT Hub

VPN
IoT Hub

Replica

IoT Hub

Replica

IoT Hub

Replica

Cloud Access

Control

Consumer

Figure 6.25 Message flow for the polling scenario: a HTTP/CoAP client requests a
resource to the cloud platform, which internally selects a suitable IoT Hub replica
and forwards the request. The request reaches the smart object only if neither the
replica nor the IoT Hub have stored a fresh cached representation of the resource.
Other replicas (which are not in the path of the request) are kept in sync using the
synchronization protocol.

flow is as follows: (1) the external client sends a HTTP or CoAP request
to the cloud platform front-end, which (2) forwards the request to
one selected replica of the IoT Hub. If the replica has a “fresh” match-
ing cached resource, it can return this immediately; otherwise (3) the
replica forwards the request to the actual IoT Hub (which is securely
connected through a VPN tunnel). If the IoT Hub has a fresh matching
cached resource, it can return it immediately; otherwise (4) it acts as a
reverse proxy and forwards a (and, if needed, translated) CoAP request
to the CoAP server, which (5) returns the resource. At this point, the
returned resource is cached by the IoT Hub, and (6) returned to the
replica, which, in turn, (7–8) sends it back to the client. The resource
cached at the IoT Hub is then (6′ and 6′′) synchronized with its repli-
cas, in order to speed up and efficiently manage subsequent requests
targeting the same resource.

Observing Resources
The Observe option [9] is a CoAP option that allows resource observ-
ing. According to this specification, a CoAP client can send a single
request, including an Observe option with a value of 0 (register), in
order to register its interest in receiving updates related to the targeted
resource. The CoAP server sends a response each time the resource
value is updated. In this case, multiple responses are sent after a single
request. The Observe option allows a notification-based communi-
cation model to be implemented, thus reducing network traffic. The
observing scenario is shown in Figure 6.26. If the targeted smart object
is a CoAP server which implements the Observe option, it can receive

6.6 The Role of the IoT Hub 289

4

56''

6'
67

8

1
2

CoAP CoAP

3

CoAP

S.O.

(Server)

IoT Hub

VPN
IoT Hub

Replica

IoT Hub

Replica

IoT Hub

Replica

Cloud Access

Control

Consumer

Figure 6.26 Message flow for the observing scenario: a CoAP client requests a
resource to the cloud platform using the CoAP Observe option. The cloud
platform internally selects a suitable IoT Hub replica and forwards the request.
The observe request is then forwarded to the IoT Hub and to the smart object
thus creating an “observe chain”. Resource updates are then sent from the smart
object back to the IoT Hub, then to the replica, and finally to the CoAP client.
Other replicas (which are not in the path of the request) are kept in sync using the
synchronization protocol.

requests to access its hosted resources, which may be either observ-
able or not. In the latter case, requests are handled as in the polling
case. In the former case, instead, the message flow resembles that of
the polling scenario, but:

• the IoT Hub observes the resource
• the external client observes the cached resource on the replica.

When the resource is updated:

• the smart object will send a notification to the IoT Hub;
• the IoT Hub will synchronize the resource with its replica;
• the replica will send a notification to the external observing client.

Pushing Resources
Sometimes, the memory constraints of smart objects make it unfea-
sible to let them act as CoAP servers. In this case, as shown in
Figure 6.27, the smart object acts as a CoAP client and sends CoAP
requests (POST and PUT) to the IoT Hub, which plays the role of an
origin server, maintaining resources on behalf of the clients. If the
smart object is a CoAP client, according to the semantics of CoAP
methods, the following message flow takes place: (1) the smart object
sends CoAP POST requests to the IoT Hub in order to create resources
and CoAP PUT requests in order to change their value. When the IoT
Hub receives POST and PUT requests, after handling these requests
as necessary, it stores them and (2, 2′ and 2′′) synchronizes them

290 6 Cloud and Fog Computing for the IoT

1

2''

2'

5

6

3

4

HTTP/CoAPHTTP/CoAP

2

CoAP

S.O.

(Client)

IoT Hub

VPN
IoT Hub

Replica

IoT Hub

Replica

IoT Hub

Replica

Cloud Access

Control

Consumer

Figure 6.27 Message flow for the pushing scenario: a smart object acting as a
CoAP client posts and updates resources on the IoT Hub, which acts as origin
server. All replicas are kept in sync using the synchronization protocol. External
client can request resources, which will served by a replica.

on the replica. When (3) an external client sends an HTTP or a
CoAP request to the cloud platform front end, (4) the latter forwards
the request to one selected replica of the IoT Hub. Since the replica
is synchronized with the IoT Hub, (5–6) the replica can respond
immediately with the stored representation of the resource.

6.6.1.3 Synchronization Protocol
The synchronization protocol used in the architecture implements a
pub/sub communication model. Communication follows a one-to-
many pattern from the IoT Hub to all of its replicas. All messages
are sent by the IoT Hub to an MQTT message broker (hosted on
the cloud platform – see Figure 6.28a). Specific MQTT topics can
be used to selectively target one, many, or all replicas in order to
implement unicast, multicast, or broadcast communications respec-
tively. The MQTT broker is managed by the cloud platform, using
a VPN connection, for security and addressing reasons, as shown
in Figure 6.28a. The IoT Hub and its replicas are all identified by a
system-wide identifier, assigned by the designed cloud platform.

Each IoT Hub includes a replica manager (RM), which is a dedicated
software module responsible for the synchronization of the IoT Hub
and its replicas. The RM comprises the following items, as shown in
Figure 6.28b:

• a replica registry (RR), which contains the list of the identifiers of all
the replicas of the IoT Hub;

• an MQTT subscriber, which registers to the broker to receive mes-
sages related to two topics (which may coincide in the case of the
actual IoT Hub):

6.6 The Role of the IoT Hub 291

MQTT

IoT Hub
Replica

IoT Hub
Replica

IoT Hub
Replica

MQTT MQTT

MQTT

Broker

VPN

IoT
Hub

(a)

MQTT
Subscriber

MQTT
Publisher

Replica
Registry

Replica id
id

1

id
2

id
3

id
4

...

Replica Manager

(b)

Figure 6.28 (a) broker-based message flow between the IoT Hub and its replicas.
(b) internal structure of the replica registry module of the IoT Hub.

– its own identifier (idi)
– the identifier of the actual IoT Hub (idhub);

• an MQTT publisher, which publishes messages to the broker, using
the method pub(t,m), where t is the topic and m is the message to
be published.

The IoT Hub is in charge of maintaining full synchronization of its
resources with its replicas, in order to ensure that all requests are
served in the same way, regardless of the specific replica that was
targeted by the client. Synchronization comes into play every time
a resource on the IoT Hub changes. This can be caused by different
events. At startup, a replica of the IoT Hub needs to synchronize with
the actual IoT Hub. The procedure is shown in Figure 6.31. The RM of
the replica publishes its idi to the topic idhub, in order to notify of its
creation (pub(idhub, idi)). At this point, the IoT Hub updates its RR by
adding idi and then starts publishing to the broker all the resources (R)

292 6 Cloud and Fog Computing for the IoT

using the topic idi (pub(idi,R)), which guarantees that the new replica
will receive the resources. When the synchronization procedure has
ended, the replica will be automatically kept synchronized with the
IoT Hub during the normal system lifecycle.

When resources are polled for (as will be described in Section
6.6.1.2), the IoT Hub might find out that a resource targeted by some
request has changed. A request targeting a resource that either has
not been cached or is not considered fresh must be forwarded by the
IoT Hub to the smart object. Upon receiving the response from the
smart object, after updating its cache and forwarding the response to
the requesting replica, the IoT Hub uses the synchronization protocol
to publish the updated information to all of its replicas.

When observing resources (as described in Section 6.6.1.2), the
synchronization procedure resembles that for the polling case. When
resources are pushed by smart objects to the IoT Hub (as described
in Section 6.6.1.2), the IoT Hub uses the synchronization protocol to
publish the updated information at all replicas. Note that this syn-
chronization strategy is needed only for those replicas that are part of
the request/response loop. In fact, as all resources are automatically
synchronized with the request-issuing replica by design, the replica
perfectly reproduces the behavior of the actual IoT Hub.

In order to validate the feasibility of the proposed IoT architectural
solution and to evaluate its performance, extensive experimentation
was conducted. The evaluation focused on the resource management
on both local and remote IoT Hubs and the synchronization mecha-
nisms previously described

The experimental setup was designed and deployed with the aim
of creating a realistic scenario, with heterogeneous components and
nodes in a local IoT network and the cloud. The main components are:
• Smart objects: Real and virtual nodes with CoAP modules based on

the Californium framework [94].
• IoT Hubs: Raspberry Pi model B [223] or independent VM instance

running all the functional modules presented in Section 6.6.1.1
(resource discovery, proxy CoAP/CoAP and HTTP/CoAP, border
router, cache and replica manager).

• Virtualization platforms: Four different virtualization configura-
tions on both local and cloud platforms are considered:
– Microsoft Azure [224]
– Amazon EC2 [225]

6.6 The Role of the IoT Hub 293

– Open Stack [226] on Microsoft Azure
– Open Stack on a local physical machine.

• Resource external consumer: Real and virtual external consumers
implementing HTTP and CoAP modules to dynamically interact
and consume resources managed by the platform and active IoT
Hubs and smart objects.

We configured and tested multiple virtualization configurations in
order to evaluate the performance of the designed IoT architecture
both on local and remote VMs. In particular, the Open Stack layer
was tested on a local installation at the Department of Information
Engineering of the University of Parma and, at a later stage, on
Microsoft Azure in order to obtain and measure more realistic
results on a professional cloud infrastructure. The local Open Stack
installation runs on a physical machine with two 1.6 GHz processors
and 3 GB RAM, while the Azure configuration was a VM with four
2.0 GHz cores and 8 GB RAM.

These two platforms were used to dynamically manage replicas of
active IoT Hubs and to handle resource synchronization and remote
data access. A virtual instance of an IoT Hub replica is characterized by
an hardware profile with a single-core 2 GHz processor; 1 GB RAM;
and 8 GB disk space. The internal IoT Hub runs a Linux Ubuntu 14.04
LTS operating system with SSH remote access, Oracle Java VM [227],
and all the required functional software modules already installed and
configured.

The following key metrics are defined to measure the performance
at different architectural layers:

• IoT Hub replica creation time: the time required to create and run,
on the target cloud infrastructure, a new instance of an IoT Hub
replica.

• Resource synchronization time: the elapsed time needed to synchro-
nize a new resource between two IoT Hubs.

• Resource access time: the time required to access and retrieve a
response for a resource of interest. It can be associated with different
configurations:
– direct and local access to the CoAP server smart object (e.g., if

the consumer and the node are in the same network);
– remote access through the cloud and communication with the

physical hub;
– remote access to the cached value stored on an IoT Hub replica.

294 6 Cloud and Fog Computing for the IoT

• CPU usage %: the percentage of CPU used by the IoT Hub core pro-
cess.

• Memory usage %: the memory percentage used by the core process
of the IoT Hub.

The first phase of the experimental performance analysis focuses on
the evaluation of the time required to create (from scratch) and run a
new IoT Hub replica instance on different virtualized cloud infrastruc-
tures. The results are shown Figure 6.30. Each value has been obtained
by averaging over 10 different VM creation runs and has a confidence
interval of 99%. It can be observed that:

• the average costs on remote and professional cloud infrastructures
are comparable;

• the cost is higher on local and non-optimized solutions (such as the
Open Stack instance running in our department).

We note that the metric corresponds to the total amount of time
required to create a new VM from scratch (starting from a pre-
configured image and adding the time to start all the required services
and architectural software processes). This cost should be considered
only once for each IoT Hub replica and is significantly written off with
the increase of the hub’s lifetime. Native VMs on Microsoft Azure
and Amazon EC2 have approximately the same creation time, while
the Open Stack platform introduces a small delay associated with
the additional overhead (of the platform itself) required to manage
multiple servers.

The second phase of the experimental analysis was focused on:

• the evaluation of the time required for synchronization of resources
between two IoT hbs (physical and virtual);

• the time needed by an external consumer to access a target resource
of interest in different scenarios and configurations.

Figure 6.29a shows, as functions of the number resources:

• the total time required for the synchronization of a set of resources
between an IoT Hub and its new replica;

• the average time required to synchronize a single resource in the
same set.

The results show that the average synchronization cost for a single
resource is stable and, consequently, the total required time is pro-
portional to the number of resources to be synchronized. The results

6.6 The Role of the IoT Hub 295

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

10 20 30 40 50 60 70 80 90 100

S
y
n

c
 T

im
e

 [
m

s
]

Resource Number

Total Sync Time
Resource AVG Sync Time

Resource AVG Sync Time

Total Sync Time

(a)

0

20

40

60

80

100

Local

Network

Azure-VM

RemoteCache

Azure-VM

Remote

T
im

e
 [

m
s
]

Resource Access Type

AVG Resource Access Time [ms]

(b)

Figure 6.29 (a) Average synchronization time with respect to the number of
synchronized resources; (b) average remote resource access time in different
application scenarios.

296 6 Cloud and Fog Computing for the IoT

0

100

200

300

400

500

600

Openstack

Azure

Azure AWS Openstack

VM

T
im

e
 [

m
s
]

Platform

Figure 6.30 Average IoT Hub creation time on different cloud platforms.

Replica Manager

(IoT Hub)

idhub

Replica Manager

(replica)

idi

MQTT

Broker

Startup

pub(idhub, idi)

idi

Update

Replica

Registry pub(idi, R)

R

Figure 6.31 Synchronization procedure performed at startup of the replica of an
IoT Hub.

also show that for a reduced number of resources, the impact of the
cost of MQTT connection creation is only slightly relevant compared
with the payload. Obviously, by increasing the number of resources
synchronized using the same MQTT connection it is possible to
reduce this effect and reach a stable value below 25 ms/resource.

6.6 The Role of the IoT Hub 297

In Figure 6.29b, the average time required by a consumer to access a
resource of interest provided by a smart object is evaluated in different
scenarios. In particular, we have considered three different configura-
tions where:

• the consumer is in the same local network as the target smart object;
• the external actor accesses a cached value on the active IoT Hub

replica on the Azure platform;
• the consumer accesses a resource that is not cached on the IoT Hub

replica and, consequently, there is a requirement for direct commu-
nication between the virtual replica and the real IoT Hub.

The results show, as intuitively expected, that the quickest access is
obtained if the consumer is in the same network as the hub and does
not require additional communication with remote infrastructure.
However, if the consumer is an external actor, the average cost – still
considering a realistic deployment through Microsoft Azure – is
below 80 ms/resource. This value decreases if we consider a resource
that is cached on the replica hub and does not require any additional
communication with the local hub and, eventually, the smart object.

Our experimentation also investigated the cost, in terms of CPU
usage of an IoT Hub process, both for local (Raspberry Pi node) and
remote (Microsoft Azure VM) instances. Figure 6.32 show the per-
centage of CPU usage during a 60-s run of core activities, highlighting:

• initialization of the main process and the creation of a set of five new
resources on the local hub;

• activation of the remote replica and its initialization;
• synchronization of the group of five initial resources between local

and remote replica hub;
• sporadic addiction of single resources until the end of the experi-

ment.

The results show how the initialization of the hub is an intensive
activity on both local and remote instances. The CPU usage incurs a
significant one-time cost due to:

• setting up the hub configurations (such as node identification and
software module selection);

• establishing the VPN connection activating the CoAP server and
the MQTT module (listener and publisher on specific topics);

• starting up the resource directory.

298 6 Cloud and Fog Computing for the IoT

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60

C
P

U
 %

Execution time [s]

Local Raspberry Pi CPU % (1 Core 800 Mhz)

Remote Azure VM CPU % (1 Core 2 Ghz)

Remote Initialization

Resource Group Sync

Local

Initialization

Single Resource

Sync

Figure 6.32 IoT Hub process CPU percentage usage for local (Raspberry Pi node)
and remote (Microsoft Azure VM) instances.

After the initialization phase, the CPU usage significantly reduces for
both resource group synchronization and sporadic management of
new single resources. These activities represent common and frequent
tasks for an active IoT Hub, which typically handles small variations
in the set of managed resources during its lifetime. The main software
process consumes a reduced amount of CPU (under 10%) for a small
amount of time on both local and remote instances.

In order to complete the analysis, Table 6.3 shows the average values
(obtained through multiple independent runs and with a confidence

Table 6.3 Average CPU and memory utilization related to specific IoT Hub
procedures on both local and remote instances.

Hub Init %
Resource
add %

Sync
resource
group %

Sync
single
resource %

[Local] Raspberry Pi CPU 96 17.45 15.15 6.93
[Local] Raspberry Pi Memory +2,7 +0.02 +0.01 +0.002
[Remote] Azure VM Remote CPU 97 NA 34.22 1.93
[Remote] Azure VM Memory +1.9 NA +0.01 +0.001

6.6 The Role of the IoT Hub 299

interval of 99%) of CPU and memory usage related to each specific
hub procedure. The data confirm the cost distribution, with a percent-
age peak due to the initialization phase and lower values for group
and single-resource synchronization. Memory utilization has been
measured as the offset with respect to the previous value and depends
on the Java VM memory management [228]. In particular, when an
object is no longer used, the Java Garbage Collector reclaims the
underlying memory and reuses it for future object allocation without
explicit deletion (no memory is given back to the operating system).

An important aspect of a truly scalable architecture is the ability
to quickly react to dynamic load changes, characterized by the rate
of incoming requests that need to be served. The replication strategy
proposed in this paper aims at providing a flexible and efficient man-
agement of IoT Hub replicas in order to guarantee that the response
time remains below a given threshold. The virtualization approach
provides a flexible solution that guarantees significant availability and
efficient load balancing in highly dynamic IoT environments. In order
to validate the designed replica management scheme, an additional
experimental phase was carried out. Leveraging the same Microsoft
Azure infrastructure used for all the other experiments, we measure
the response time for incoming requests for smart object resources
managed by the IoT Hub.

In Figure 6.33, the effect of replica management is shown in terms of
response time as a function of the incoming request rate. In particular,
the results are the smallest number of requests that prompts creation
of a new replica of the IoT Hub, which happens whenever the response
time exceeds a threshold of 800 ms. The graph clearly shows that the
response time tends to increase linearly as a function of the rate of
requests until the IoT Hub reaches a breaking point associated with
the maximum number of requests it can handle. This is clearly visible
in the areas of the graph characterized by steep slopes. When a slope
is detected, we activate a new replica, which brings the response
time back to a value that meets our operational requirements. As
the request rate increases, new replicas are created. As shown in
Figure 6.33, we stopped our experimentation after the activation of
three replicas. It is worth noting that:

• a new replica is activated almost periodically (every 800 ms, accord-
ing to the set threshold)

• the slope of the response time between two consecutive activations
is inversely proportional to the number of active replicas.

300 6 Cloud and Fog Computing for the IoT

200

400

600

800

1000

1200

1400

1600

1800

2000

0 500 1000 1500 2000 2500

R
e

s
p

o
n

s
e

 t
im

e
 [
m

s
]

Requests per second [n/s]

Figure 6.33 Effect of replica management with respect to the increasing number
of requests per second (Microsoft Azure infrastructure).

The widespread adoption of container-based technologies has
significantly changed the way cloud and fog applications can be
deployed and delivered to final users. In order to provide a thorough
performance evaluation of the proposed solution, we also created
a container-based version of the IoT Hub using the Docker plat-
form [216]. The container has the same networking configuration,
features, and services as running on the VM-based version but shares
an operating system kernel and features with other container instances
running on the same server. The local experimentation was conducted
using a VM running Ubuntu 14.04, with one 2.0 GHz processor and
1 GB RAM. Docker 1.11 was executed on top of this with the aim
of evaluating the startup time of the dockerized IoT Hub. Such a
low-end hardware profile, compared to realistic data center facilities,
was purposely chosen to show the small footprint of the IoT Hub.

In Figure 6.34, the average total startup time required to activate
a fully operative IoT Hub instance, as well as the breakdown of
container and IoT Hub services startup time, are shown. The results
have been averaged over 1000 runs on the configured setup. The
container startup time simply considers the activation of a Docker

6.6 The Role of the IoT Hub 301

0

200

400

600

800

1000

1200

Container IoTHub Services Total

A
ve

ra
g

e
 S

ta
rt

u
p

 T
im

e
 [

m
s
]

Figure 6.34 Average IoT Hub startup time on a Docker container.

container instance. On top of this running instance, we measure
the time required to activate all IoT Hub services and to respond
to incoming HTTP and CoAP requests. The results show how a
container-based approach can be efficiently adopted both on cloud or
fog infrastructures (according to the target application scenarios) to
support efficient and highly dynamic creation and management of IoT
Hub replicas on top of existing host machines. Unlike a VM-based
approach, container-based IoT Hub instances can be instantiated
and removed dynamically, depending on the instantaneous load and
without affecting the host machine or requiring infrastructure-related
efforts (such as file/template management or configuration and
activation of new machines).

303

7

The IoT in Practice

7.1 Hardware for the IoT

The IoT is expected be a worldwide network comprising, by 2020, bil-
lions of devices. This gigantic number of devices, pervasively deployed,
will be characterized by their heterogeneity in terms of software and,
in particular, hardware.

In order to provide a general definition for hardware platforms,
Figure 7.1 shows an high-level view of the main hardware components
in a smart object. The illustrated modules are:

• Communication module: This gives the smart object its communi-
cation capabilities. It is typically either a radio transceiver with an
antenna or a wired connection.

• Microcontroller: This gives the smart object its behavior. It is a small
microprocessor that runs the software of the smart object.

• Sensors or actuators: These give the smart object a way to sense and
interact with the physical world.

• Power source: This is needed because the smart object contains
electrical circuits. The most common power source is a battery,
but there are other examples as well, such as piezoelectric power
sources, that provide power when a physical force is applied, or
small solar cells that provide power when light shines on them.

Microcontrollers have two types of memory: Read-only memory
(ROM) and random access memory (RAM). ROM is used to store
the program code that encodes the behavior of the device and RAM
is used for temporary data the software needs to do its task. For

Internet of Things: Architectures, Protocols and Standards, First Edition.
Simone Cirani, Gianluigi Ferrari, Marco Picone, and Luca Veltri.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

304 7 The IoT in Practice

Radio Micro-controller

Micro-controller

Sensors

Actuator

Sensors

Actuator

Power

(a)

(b)

Power

Wired

Communication

Figure 7.1 Smart
object hardware, with
(a) radio network
interface and (b)
wired communication
interface.

example, temporary data includes storage for program variables and
buffer memory for handling radio traffic.

For constrained devices, the content of the ROM is typically burned
into the device when it is manufactured and is not altered after deploy-
ment. Modern microcontrollers provide a mechanism for rewriting
the ROM, which is useful for in-field updates of software after the
devices have been deployed.

In addition to memory for storing program code and temporary
variables, microcontrollers contain a set of timers and mechanisms
for interacting with external devices, such as communication devices,
sensors, and actuators. The timers can be freely used by the software
running on the microcontroller. External devices are physically
connected to its pins. The software communicates with the devices
using mechanisms provided by the microcontroller, typically in the
form of a serial port or a serial bus. Most microcontrollers provide a
so-called universal synchronous/asynchronous receiver/transmitter
(USART) for communication with serial ports. Some USARTs can
be configured to work as a serial peripheral interface (SPI) bus for
communicating with sensors and actuators.

A smart object is driven by electronics, and electronics need power.
Therefore, every smart object needs a power source (some power

7.1 Hardware for the IoT 305

Table 7.1 Power sources for smart objects, maximum current
draws, and charge they can store.

Power source
Typical maximum
current (mA)

Typical charge
(mAh)

CR2032 button cell 20 200
AA alkaline battery 20 3000
Solar cell 40 Limitless
RF power 25 Limitless

source examples are reported in Table 7.1). Today, the most common
power source is a battery, but there are several other possibilities
for power, such as solar cells, piezoelectricity, radio-transmitted
energy, and other forms of power scavenging. Lithium cell batteries
are currently the most common. With low-power hardware and
proper energy-management software, a smart object can have a
lifetime of years on standard lithium cell batteries. Unlike cell phones
and laptops, which are human-operated, most smart objects are
designed to operate without human control or human supervision.
Furthermore, many smart objects are located in difficult-to-reach
places, and many are embedded in other objects. Therefore, in most
cases it is impractical to recharge their batteries.

7.1.1 Classes of Constrained Devices

Despite the overwhelming variety of Internet-connected devices envi-
sioned, it is absolutely worthwhile to have a common terminology for
different classes of constrained devices. For this reason, the RFC7228
[229] provides a definition for the main classes and characteristics of
IoT smart objects and constrained devices (Table 7.2).

These characteristics correspond to distinguishable clusters of com-
mercially available chips and design cores for constrained devices. It
is expected that the boundaries of these classes will move over time;
Moore’s law tends to be less effective in the embedded space than in
personal computing devices, so gains made available by increases in
transistor count and density are more likely to be invested in reduc-
tions in cost and power requirements than in continual increases in
computing power.

306 7 The IoT in Practice

Table 7.2 RFC7228 classes of constrained devices.

Name
Data size
(e.g., RAM)

Code size
(e.g., Flash)

Class 0 (C0) ≪10 KiB ≪100 KiB
Class 1 (C1) ∼ 10 KiB ∼ 100 KiB
Class 2 (C2) ∼ 50 KiB ∼ 250 KiB

In more detail, the classes are as follows:

Class 0
devices are very constrained sensor-like motes. They are so severely
constrained in memory and processing capabilities that most likely
they will not have the resources required to communicate directly
with the Internet in a secure manner. These devices will participate
in Internet communications with the help of larger devices acting
as proxies, gateways, or servers. Class 0 devices generally cannot be
secured or managed comprehensively in the traditional sense. They
will most likely be preconfigured (and will be reconfigured rarely, if at
all) with a very small data set. For management purposes, they could
answer keep-alive signals and send on/off or basic health and status
indications.

Class 1
devices are quite constrained in code space and processing capabili-
ties, such that they cannot easily talk to other Internet nodes employ-
ing a full protocol stack such as HTTP, Transport Layer Security, and
related security protocols and XML-based data representations. They
are can use a protocol stack specifically designed for constrained nodes
(such as CoAP over UDP) and participate in meaningful conversations
without the help of a gateway node. They can provide support for the
security functions required on a large network. Therefore, they can be
integrated as fully developed peers into an IP network, but they need
to be parsimonious with state memory, code space, and often power
expenditure for protocol and application usage.

Class 2
devices are less constrained and fundamentally capable of supporting
most of the same protocol stacks as used on notebooks or servers.
They can benefit from lightweight and energy-efficient protocols and

7.1 Hardware for the IoT 307

from consuming less bandwidth. Using fewer resources for networking
leaves more resources available for applications. Thus, using the pro-
tocol stacks defined for more constrained devices on Class 2 devices
might reduce development costs and increase interoperability.

7.1.2 Hardware Platforms

In this section we introduce some of the main hardware platforms
available on the market, trying to highlight their distinctive features
and associated classes.

7.1.2.1 TelosB
TelosB1 is a mote from Memsic Technology. It has the same design as
the Tmote Sky mote from Sentilla. It is comprises the MSP430 (the
MSP430F1611) microcontroller and a CC2420 radio chip. The micro-
controller of this mote operates at 415 MHz and has 10 kB internal
RAM and a 48 kB programmable flash memory.

The TelosB was developed by the University of California, Berkeley.
It was a new mote design based on experiences with previous mote
generations. It was designed with three major goals that would enable
experimentation: minimal power consumption, ease of use, and
increased software and hardware robustness. The use of the MSP430
in Telos gave it a power profile almost one-tenth that of previous mote
platforms.

Figure 7.2 is a schematic overview of the mote and shows how the
components interact. Table 7.3 gives the detailed hardware profile,
with the modules and their associated descriptions. Telos B can be
classified as a Class 0 constrained device.

7.1.2.2 Zolertia Z1
The Zolertia Z12 is a general purpose development board targeting
wireless sensor networks and heterogeneous IoT applications. It is
equipped with two on-board digital sensors (an accelerometer and a
temperature sensor), and uses Phidget Sensors connectors to easily
extend connected devices such as sensors and actuators.

Figure 7.3 and Table 7.4 are a schematic overview of the Z1, and a
summary of the components interactions and available sensors with

1 http://www.memsic.com/userfiles/files/Datasheets/WSN/
telosb:datasheet.pdf.
2 http://zolertia.io/z1.

308 7 The IoT in Practice

USB

Connector

Light

Sensor

Temp./

Humidity

Sensor

Logger

Flash

Serial

ID

802.15.4

Radio

6
 a

n
d

 1
0
-P

in
 C

o
n

n
e

c
to

r

Embedded Antenna

MSP430

μ controller

Analog I/O

Digital I/O

Figure 7.2 The hardware schema and the board image of the TelosB mote
platform.

Table 7.3 Hardware specification of the MemSic TelosB mote.

Name Description

MCU TI MSP430F1611
RAM 10 kB
ROM 48 kB
Serial communication UART
Main module current draw 1.8 mA (active mode)

5.1 μA (sleep mode)
IEEE 802.15.4 compliant
RF transceiver 2400–2483.5 MHz
RF current draw 23 mA (receive mode)

21 μA (idle mode)
1 μA (sleep mode)

Battery 2 × AA batteries
Sensors Visible light sensor

Humidity sensor
Temperature sensor

7.1 Hardware for the IoT 309

SPI
I2C

UART1

UART0
USB

GPIOs

Phidgets Connectors,

 ADCs, DACs

Ceramic

2 antenna options

U.FL external

CC2420

16Mb

Flash

MCU

3-axis

Accel.

Temp.

Sensor

Exp.

Connector

52pin

Interrupts

BSLJTAG

JTAG

Header

GND

Analog Input USBGND

USB + 5V

3V Phidget

5V Phidget

Analog Input

Ground (0V)
Power (+5V)

Power (+3V or +5V)Top View

Micro-USB

D
ig

ita
l B

u
s
e
s
 C

o
n

n
e
c
tiv

ity

1
2
C

, S
P

I, U
A

R
T

s
, U

S
B

,

T
im

e
r C

a
p
tu

re
/C

o
m

p
a
re

 R
e
g
s

Analog I/O

2 × 3V phidgets | 1 × 3V+1×5V phidgets

ADCs, DACs

R
F

 C
o

n
n

e
c
ti

v
it

y

IE
E

E
 8

0
2
.1

5
.4

,
6
L
o
w

P
a
n
,
Z

ig
b
e
e

1
m

W
 (

0
 d

B
m

)

Digital I/O

GPIOs, Interrupts, Timers, Comparators I/O

Figure 3 — Z1 Expansion Capabilities (54-pin XPCon)

Figure 7.3 The Zolertia Z1 platform with board images and main component
schema.

310 7 The IoT in Practice

Table 7.4 Hardware specification of the Zolertia Z1 platform.

Name Description

MCU TI MSP430F2617
RAM 8 kB
ROM 92 kB
Digital communication I2C, SPI and UART
Main module current draw 0.5 mA (active mode)

0.5 μA (standby mode)
IEEE 802.15.4 compliant
RF transceiver CC2420 2.4 GHz
RF current draw 18.8 mA (receive mode)

426 μA (idle mode)
20 μA (sleep mode)

Battery 2 × AA or AAA cells
1 × CR2032 coin cell

Sensors Low-power digital temperature
sensor 3-axis, ±2/4/8/16g digital
accelerometer, 3 V and 5 V
Phidget Sensors connectors

their connectors. Like Telos B, Zolertia Z1 can be classified as a Class
0 constrained device.

7.1.2.3 OpenMote
OpenMote3 hardware is composed of three boards: OpenMote-
CC2538, OpenBase and OpenBattery. OpenMote-CC2538 is the
mote itself and includes the microcontroller and the radio transceiver,
as well as other peripherals such as LEDs and buttons. The OpenBase
is the board allowing programming and debugging through a UART
or USB interface with a computer or via an Ethernet port with the
Internet. The OpenBattery is the board that lets OpenMote-CC2538
run autonomously by providing energy to all its subsystems, as well
allowing it to interface it with various sensors.

3 http://www.openmote.com.

7.1 Hardware for the IoT 311

The OpenMote-CC2538 includes the following hardware:

• CC2538: This is a system on a chip (SoC) from Texas Instruments,
with a 32-bit Cortex-M3 microcontroller and a CC2520-like radio
transceiver. The microcontroller runs up to 32 MHz and includes
32 kB of RAM and 512 kB of flash memory, and the usual periph-
erals (GPIOs, ADC, timers, etc.). The radio operates in the 2.4 GHz
band and is fully compatible with the IEEE 802.15.4-2006 standard.

• TPS62730: This is a step-down DC/DC converter from Texas
Instruments with two operation modes: regulated and bypass. In
bypass mode the TPS62730 directly connects the input voltage
from the battery (typically 3 V) to the whole system. In regulated
mode the TPS62730 regulates the input voltage down to 2.1 V. The
benefit of this architecture is in terms of system efficiency, since it is
an improvement under both low- and high-load conditions; that is,
either when the system is sleeping or when the radio is transmitting
or receiving.

• ABM8G: This is a 32 MHz crystal from Abracon Corporation, used
to clock the microcontroller and the radio transceiver. It is rated at
30 ppm (parts per million) from −20∘C to +70∘C.

• ABS07 : This is a 32.768 kHz crystal from Abracon Corporation used
to clock the microcontroller’s real time clock. It is rated at 10 ppm
from −40∘C to +85∘C.

• LEDs: There are four LEDs (red, green, yellow and orange) from
Rohm Semiconductor, used for debugging purposes.

• Buttons: There are two buttons, from Omron. One is used to reset
the board and the other is connected to a GPIO line, thus enabling
the microcontroller to be woken from sleep modes through an inter-
rupt.

• Antenna connector: The antenna connector enables an external
antenna to be connected to the board.

• XBee layout: The OpenMote is fully compliant with the XBee form
factor, meaning that it can be easily interfaced with a computer
using a XBee Explorer dongle.

Figure 7.4 and Table 7.5 give a schematic overview of the Open Mote,
the component interactions and the available sensors with connec-
tors. The OpenMote runs multiple operating systems, such as Contiki,
OpenWSN, FreeRTOS and RiOT. It can be classified as a Class 0 con-
strained devices.

312 7 The IoT in Practice

A
D

4
/D

IO
4

DIN

VCC

DOUT

A
D

3
/D

IO
3

CC2538
OpenBase Module

OpenBattery Module

AD0/DIO0

2
3

2
4

2
5

2
6

2
7

2
8

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1

5
6

5
7

1

1

1

2

VCC

2
3

4

5

6

7
8

9

10
11

12
13
14

5
5

5
4

5
3

5
2

5
1

5
0

4
9

4
8

4
7

4
6

4
5

4
4

4
3

X
O

S
C

3
2
K

_
Q

1

X
O

S
C

3
2
K

_
Q

2

J
T
A

G
_
T

M
S

J
T
A

G
_
T

C
K

J
T
A

G
_
T

D
O

J
T
A

G
_
T

D
I

O
N

/B
Y

P

D
T

R
/D

I8

P
W

M
1

P
W

M
0
/R

S
S

I
D

0
8

V
D

D

A
G

N
D

D
C

O
U

P
L

D
V

D
D

P
B

1
P

B
2

P
B

3

P
B

4

P
B

5

P
B

6
/J

T
A

G
_
T

D
I

P
B

7
/J

T
A

G
_
T

D
O

J
T
A

G
_
T

C
K

J
T
A

G
_
T

M
S

P
D

7
/X

O
S

C
3
2
K

_
Q

2

P
D

6
/X

O
S

C
3
2
K

_
Q

1

A
V

D
D

_
G

U
A

R
D

R_BIASDGND_USB

USB_PUSB_P
USB_N

DVDD_USB

STAT

GREEN_LED

YELLOW_LED

ORANGE_LED
RED_LED

VCC
USER_BUTTON

USB_SEL

USB_N
DVDD_USB
PB0
PC7

PC6

PC5
PC4

PC3
PC2

PC1

PC0

VDD

AVDD
AVDD

AVDD

AVDD

AVDD

XOSC32M_Q2

XOSC32M_Q1

PD5

DCOUPL2

PD4

PD3

RF_N

RF_P

P
A

0
/U

A
R

T
_
R

X
D

P
A

1
/U

A
R

T
_
T

X
D

P
A

2
/S

S
I_

C
L

K

P
A

3
/S

S
I_

S
E

L

P
A

4
/S

S
I_

R
X

D

P
A

5
/S

S
I_

T
X

D

P
A

6
P
A

7

V
D

D
P

D
0

P
D

1

P
D

2

R
E

S
E

T
_
N

2

2
1

1

2

29
30

31
32

33
34 XOSC32M_Q1

XOSC32M_Q235

36
37

38

39

40
41

42

VCC

VCC

ANT2_SEL

ANT1_SEL

1

1 2

1

1A
D

2
/D

IO
2

A
D

1
/D

IO
1

RESET_N

C
T

S
/D

IO
7

A
D

5
/D

IO
5

R
T

S
/A

D
6
/D

IO
6

O
N

/S
L

E
E

P

R
2
8
1

2
.2

k
O

h
m

G
N

D

G
N

D

G
N

D

GND

G
N

D

GNDR421

56kOhm

CC2538

C561

C
3
2
1

1
u
F

1nF

1uF

C281

Figure 7.4 The OpenMote platform with main hardware schema and core board
with battery and OpenBase additional modules.

7.1 Hardware for the IoT 313

Table 7.5 Hardware specification of the OpenMote platform.

Name Description

MCU TI 32-bit Cortex-M3
RAM 32 kB
ROM 512 kB
Digital communication I2C, and UART
Main module current draw 0.5 mA (active mode)

0.5 μA (standby mode)
IEEE 802.15.4 compliant
RF transceiver CC2520 2.4 GHz
Battery 2 × AAA cells
Sensors Temperature/humidity sensor (SHT21)

Acceleration sensor (ADXL346)
Light sensor (MAX44009)

7.1.2.4 Arduino
Arduino4 is a computer hardware and software company manufactur-
ing microcontroller kits for building digital devices that can sense and
interact with the physical world. The board designs adopt a variety of
microprocessors and controllers and are equipped with sets of digi-
tal and analog input/output pins, which may be interfaced expansion
boards (called “shields”) and other external circuits and components.
The typical programming language is a dialect of the traditional C and
C++, with the possibility of including the many existing libraries from
the developer community.

The Arduino project started in Italy in 2005 as a program for
students at the Ivrea Interaction Design Institute. The aim was to
create a low-cost and easy-to-use board for novices and profes-
sionals. Arduino boards have been designed to create devices and
prototypes that interact with the environment using sensors and
actuators and multiple communication paradigms (thanks to the
shield expansion-board system).

One of the first Arduino boards built for the IoT ecosystem was
the Arduino Yun. This is a microcontroller board based on the

4 https://www.arduino.cc.

314 7 The IoT in Practice

ATmega32u4 and the Atheros AR9331. The Atheros processor runs a
Linux distribution, based on OpenWrt,5 called Linino OS. The board
has built-in Ethernet and Wi-Fi communication interfaces, a USB-A
port, a micro-SD card slot, 20 digital input/output pins (seven of
which can be used as PWM outputs and twelve as analog inputs), a
16 MHz crystal oscillator, a micro USB connection, an ICSP header,
and three reset buttons.

Figure 7.5 shows the Arduino Yun architecture and how the Linux
module of the board can communicate with a traditional Arduino
module. This communication capability distinguishes this board from
the other boards, offering a powerful networked computer that can
be used to create IoT prototypes in several application scenarios.

ATmega

32u4

Linino

AR 9331

USB

Prog.

WiFi

Interface

ETH

Interface

USB

HOST

SD

CARD

BRIDGE

ARDUINO ENVIRONMENT LINUX ENVIRONMENT

Rx

RxTx

Tx

Figure 7.5 Classical and Yun versions of the Arduino platform with a detailed
representation of the Yun hardware architecture and main components.

5 https://openwrt.org/.

7.1 Hardware for the IoT 315

WiFi AR9331 Linux

Micro SD

ATmega 32U4

USB Host

Prog. Micro USB

Ethernet

Figure 7.5 (Continued)

Tables 7.6 and 7.7 report the detailed hardware profile of Arduino
Yun modules with their associated components and descriptions. The
Yun board can be classified as a Class 2 constrained device.

7.1.2.5 Intel Galileo
Intel Galileo6 was the first Arduino-certified development board based
on Intel’s x86 architecture. It was designed for makers and education/

6 https://software.intel.com/en-us/iot/hardware/galileo.

316 7 The IoT in Practice

Table 7.6 Hardware specification of the Arduino
Yun AVR Arduino microcontroller.

Name Description

Microcontroller ATmega32U4
Operating Voltage 5 V
Input Voltage 5 V
Digital I/O pins 20
PWM Output 7
Analog I/O pins 12
Flash memory 32 kB (4 kB used by

the bootloader)
SRAM 2.5 kB
EEPROM 1 kB
Clock speed 16 MHz

Table 7.7 Hardware specification of the Arduino Yun
Arduino microprocessor.

Name Description

Processor Atheros AR9331
Architecture MIPS
Operating voltage 3.3 V
Ethernet IEEE 802.3 (10/100Mbit/s)
Wi-Fi IEEE 802.11b/g/n (2.4 GHz)
USB type 2.0 Host
Flash memory 16 MB
RAM 64 MB DDR2
SRAM 2.5 kB
EEPROM 1 kB
Clock speed 400 MHz

7.1 Hardware for the IoT 317

academic communities. The board combines Intel technology with
support for Arduino expansion shields and the related software and
libraries. The board runs an open-source Linux operating system with
the Arduino software libraries, enabling re-use of existing software.
Intel Galileo hosts a Linux operating system.

Intel Galileo is equipped with the Intel Quark SoC X1000, the
first product from the Intel Quark technology family of low-power,
small-core products. The Galileo board comes with several comput-
ing industry standard I/O interfaces, including ACPI, PCI Express,
10/100 Mbit Ethernet, Micro SD or SDHD, USB 2.0 and EHCI/OHCI
USB host ports, high-speed UART, RS-232 serial port, programmable
8 MB NOR flash, and a JTAG port for debugging.

Figure 7.6 and Table 7.8 give a schematic overview of the Intel
Galileo boards, component interactions and available communication
modules, for both first- and second-generation devices. Galileo can
be classified as a Class 2 constrained devices.

M
U

X M
U

X

G
P

IO

P
W

M

G
P

IO

P
W

M

A
D

C
F

L
A

S
H

M
U

X

ICSP

IOREF Jumper

selects 3.3V or

SVShield

Operation

All GPIO PWM

provided by a

single I2 C+ 10

Expander

1

2

3

4

5

6

7

8

6

5

4

3

2

1

VIN

AO

A1

A2

A3

A4

A5

GND

GND

5V

3.3V

3.3V

5V 5V Brick PowerSupply

Three-Output Voltage Regulator

VTT Regulator

FETs for S0/S3 states

~1011

GNDRESET
1013
1012 1

3
5 6

4
2

5V

JTAG

SPI1

GPIO LED

4

32.768

KHz
GPIO

(INT0/1)

10
9
8
7
6
5
4
3
2

8
7
6
5
4
3
2
1 RX

TX
102

~103

~105
104

~106
107

1 108
~109
~1010
~1011
1012
1013
GND

AREF
SDA
SCL

4

2

2
2

UART 0

2

25MHz

Clocks Out

PCle*

2 6

2

4

4

DEDIPROG

SPI

LSPI

12C+

COIN

HDR

DDR3

X8

DDR3

X8
256 MB

VIN

M
U

X M
U

X
M

U
X

D
IG

IT
A

L
 (P

W
M

~
)

M
U

X

G
P

IO

P
W

M

G
P

IO

P
W

M
G

P
IO

 P
W

M

A
D

C
F

L
A

S
H

M
U

X

RESET

IOREF

Intel6 Galileo Board Fab D

October 2013

P
O

W
E

R
A

N
A

L
O

G
 I

N

RMI [0]

Mini-PCle*

Micro SD

Connector

Host USB 0

SDIO

Host USB 1

Client USB

PHY

3 pin Jack (Not Audio)

3.3V <-> 5V Level

Translation provided

on board between

allSoCIOs and

Shield Headers

UART 1

Host

USB

Client

USB

10/100

Ethernet

RS-232

XCVR

Processor

Figure 7.6 First and second generations of the Intel Galileo platform with board
schemas and hardware architecture of main components.

318 7 The IoT in Practice

Gen 1

Gen 2

Figure 7.6 (Continued)

7.1.2.6 Raspberry Pi
The Raspberry Pi7 is a series of single-board computers created in the
United Kingdom by the Raspberry Pi Foundation. The original aim of

7 https://www.raspberrypi.org/.

7.1 Hardware for the IoT 319

Table 7.8 Hardware specification of the Intel Galileo board.

Name Description

MCU SoC X Intel Qua k X1000
RAM 256 MB
Memory SDCard (MBytes)
Serial communication I2C and UART
Main module current draw 0.5 mA (active mode)

0.5 μA (standby mode)
Network adapter IEEE 802.3 10/100 (Ethernet)
Battery –
Sensors –

the founders was to encourage the teaching of basic computer science
in schools and developing countries. Step by step, their boards signif-
icantly changed the way manufacturers and developers thought about
and created new projects in many application scenarios. For example,
the original model became very popular and started spreading outside
of its initial target market for uses such as robotics.

Figure 7.7 shows three Raspberry Pi boards with their available
components and hardware profiles. The Broadcom BCM2835 SoC
was used on the first generation and was inspired by the chip used in
first-generation smartphones (its CPU is an older ARMv6 architec-
ture). It includes a 700 MHz ARM1176JZF-S processor, VideoCore IV
GPU, and RAM. It has a level 1 (L1) cache of 16 kB and a level 2 (L2)
cache of 128 kB. The level 2 cache is used primarily by the GPU. The
SoC is stacked underneath the RAM chip, so only its edge is visible.

The Raspberry Pi 2 uses a Broadcom BCM2836 SoC with a 900 MHz
32-bit quad-core ARM Cortex-A7 processor (as do many current
smartphones), with 256 kB shared L2 cache.

The Raspberry Pi 3 uses a Broadcom BCM2837 SoC with a 1.2 GHz
64-bit quad-core ARM Cortex-A53 processor, with 512 kB shared L2
cache.

The Model A, A+ and Pi Zero are shipped without Ethernet
modules and are commonly connected to a network using external
adapters for Ethernet or Wi-Fi. Models B and B+ have the Ethernet
port that is provided by a built-in USB Ethernet adapter using the

320 7 The IoT in Practice

Figure 7.7 Main Raspberry Pi boards and revisions.

7.2 Software for the IoT 321

SMSC LAN9514 chip. The Raspberry Pi 3 and Pi Zero W (wireless)
provide a 2.4 GHz Wi-Fi 802.11n (150 Mbit/s) and Bluetooth 4.1
(24 Mbit/s) connectivity module based on a Broadcom BCM43438
chip. The Raspberry Pi 3 is also equipped with a 10/100 Ethernet port.

The Raspberry Pi can be also used with USB storage, USB-to-MIDI
converters, and virtually any other device/component with USB capa-
bilities. Other external devices, sensors/actuators and peripherals
can be attached through a set of pins and connectors available on the
board’s surface.

The Raspberry Pi board family can run multiple operating systems,
such as Raspbian, Fedora, Ubuntu MATE, Kali Linux, Ubuntu Core,
Windows 10 IoT Core, RISC OS, Slackware, Debian, Arch Linux ARM,
and Android Things. This combination of high-profile hardware, soft-
ware and operating systems makes these boards to represent powerful
and complex nodes in heterogenous IoT applications. They can effi-
ciently work as IoT Hubs, gateways and data collectors using heteroge-
nous protocols and running multiple services at the same time. All the
Raspberry Pi boards can be classified as Class 2 constrained devices.

7.2 Software for the IoT

In this section, an overview of the main operating systems for the IoT
is presented. The Contiki operating system is particularly important,
and a more detailed description is therefore provided in Section 7.2.6.

7.2.1 OpenWSN

The OpenWSN8 project is an open-source implementation of a
fully standards-based protocol stack for IoT networks. It was based
on the new IEEE802.15.4e time-slotted channel-hopping standard.
IEEE802.15.4e, coupled with IoT standards such as 6LoWPAN, RPL
and CoAP, enables ultra-low-power and highly reliable mesh networks
that are fully integrated into the Internet.

OpenWSN has been ported to numerous commercial available plat-
forms from older 16-bit micro-controllers to state-of-the-art 32-bit

8 https://openwsn.atlassian.net/wiki/pages/viewpage.action?
pageId=688187.

322 7 The IoT in Practice

GINAOpenMote-CC2538
UDP TCP

RPL

6LoWPAN

6top (6TiSCH)

IEEE802.15.4e TSCH

Platforms

IEEE802.15.4 (PHY)

HTTP

Applications

CoAP

Z1 TelosB

WSN430v13b

WSN430v14

OpenMoteSTM SAM R21 loT-LAB_M3 AgileFox

1
0
%

 B
S

P
9

0
%

 h
a
rd

w
a
re

 in
d
e
p
e
n
d
e
n
t

Figure 7.8 OpenWSN protocol stack, highlighting hardware-independent
modules and supported hardware platforms.

Cortex-M architectures. The OpenWSN project offers a free and
open-source implementation of a protocol stack and the surrounding
debugging and integration tools, thereby contributing to the overall
goal of promoting the use of low-power wireless mesh networks.

Figure 7.8 shows the OpenWSN protocol layers and software
libraries, which are hardware independent, and a set of supported
hardware platforms, on which it can be installed and used.

7.2.2 TinyOS

TinyOS9 is a free, open-source, BSD-licensed OS designed for low-
power embedded distributed wireless devices used in sensor net-
works. It has designed to support the intensive concurrent operations
required by networked sensors, with minimal hardware require-
ments. TinyOS was developed by University of California, Berkeley,
Intel Research, and Crossbow Technology. It is written in the nesC
(Network Embedded Systems C) programming language, which is a
version of C optimized to support components and concurrency. It
is also component-based, supporting event-driven programming of
applications for TinyOS.

9 www.tinyos.net/.

7.2 Software for the IoT 323

7.2.3 FreeRTOS

FreeRTOS10 is a real-time operating system kernel for embed-
ded devices designed to be small and simple. It been ported to
35 micro-controllers and it is distributed under the GPL with an
optional exception. The exception permits users’ proprietary code
to remain closed source while maintaining the kernel itself as open
source, thereby facilitating the use of FreeRTOS in proprietary
applications.

In order to make the code readable, easy to port, and maintainable,
it is written mostly in C, (but some assembly functions have been
included to support architecture-specific scheduler routines). It pro-
vides methods for multiple threads or tasks, mutexes, semaphores
and software timers.

7.2.4 TI-RTOS

TI-RTOS11 is a real-time operating system that enables faster
development by eliminating the need for developers to write and
maintain system software such as schedulers, protocol stacks,
power-management frameworks and drivers. It is provided with full C
source code and requires no up-front or runtime license fees. TI-RTOS
scales from a low-footprint, real-time preemptive multitasking kernel
to a complete RTOS with additional middleware components includ-
ing a power manager, TCP/IP and USB stacks, a FAT file system, and
device drivers, allowing developers to focus on differentiating their
applications.

Figure 7.9 shows the main software components of the TI-RTOS
operating system. In particular, it is based on a core layer with a
real-time kernel, connectivity support and power management. On
top of that, a set of platform APIs allow the developer to build custom
applications. The OS provides a large set of ready-to-use libraries
based on TCP/UDP/IP networking, standard BSD socket interface
and main application layer protocols such as HTTP, TFTP, Telnet,
DNS, and DHCP.

10 www.freertos.org/.
11 http://www.ti.com/tool/ti-rtos.

324 7 The IoT in Practice

Real-Time Kernel
Power

Manager

Drivers

User

Application

Tasks

Optional

Other

Middleware

USB, File

Systems

Connectivity

Wi-Fi®, Bluetooth®

Smart, ZigBee®,

 Cellular

(via PPP),

 TCP/IP

IoT SoC Sensors

APIs IP

ARP

NAT

I/F

Manager

Route

Manager

Ethernet I/F

Hardware Adaptation Layer

Ethernet

Packet

Driver

Serial

Port

Driver

Timer

Driver

Hardware

User

LED

Driver

TCP UDP ICMP

Standard BSD Sockets Interface

IGMP

S

N

T

P

H

T

T

P

T

F

T

P

T

E

L

N

E

T

D

N

S

D

H

C

P

P
la

tf
o

rm

Figure 7.9 Schematic overview of the TI-RTOS operating system with main
modules and software components.

Embedded IP

Stack

Applications

System

Libraries

Network

Stack

CoAP
UDP

RPL*

IPv6

6LoWPAN

IEEE 802.15.4 MAC

Radio Transmission

* Partially Supported

HTTP
TCP UDP

ICMP

IEEE 802.3

IEEE 802.11

IEEE 802.3

IEEE 802.11

IPv6

OSLR or

OSPF*

Kernel

Hardware Abstraction

Hardware Platform

ICMP

Traditional IP

Stack

Content-Centric

Stack

Applications

CCN Lite

Figure 7.10 Overview of networking architecture for the RIOT operating system.

7.2.5 RIOT

RIOT12 is an open-source microkernel operating system for the IoT,
licensed as LGPL. It allows C and C++ application programming,
and provides both full multi-threading and real-time capabilities (in
contrast to other operating systems with similar memory footprints,
such as TinyOS or Contiki). RIOT runs on 8-bit (e.g., AVR Atmega),
16-bit (e.g., TI MSP430) and 32-bit hardware (e.g., ARM Cortex). A
native port also enables RIOT to run as a Linux or MacOS process,
enabling the use of standard development and debugging tools such
as GNU Compiler Collection, GNU Debugger, Valgrind, Wireshark,
an so on. RIOT is partly POSIX-compliant and provides multiple
network stacks, including IPv6, 6LoWPAN and standard protocols
such as RPL, UDP, TCP, and CoAP (see Figure 7.10).

12 www.riot-os.org/.

7.2 Software for the IoT 325

7.2.6 Contiki OS

Contiki is an operating system for networked, memory-constrained
systems, targeting low-power wireless IoT devices. Its main charac-
teristics are:
• It is open source and in continuous development. Even if it is

less well documented and less well maintained than commercial
operating systems, it allows developers not only to work on custom
applications but also to modify core OS functionalities such as the
TCP/IP stack and the routing protocol.

• It provides a full TCP/uIPv6 stack using 6LoWPAN [230] for header
compression, and creates LR-WPAN routes with RPL [39], the IPv6
routing protocol for low-power and lossy networks
Contiki was created by Adam Dunkels in 2002 and has been further

developed by a worldwide team of developers from Texas Instruments,
Atmel, Cisco, ENEA, ETH Zurich, Redwire, RWTH Aachen Univer-
sity, Oxford University, SAP, Sensinode, the Swedish Institute of Com-
puter Science, ST Microelectronics, Zolertia, and many others.

Contiki is designed to run on classes of hardware devices that are
severely constrained in terms of memory, power, processing power,
and communication bandwidth. For example, in terms of memory,
despite providing multitasking and a built-in TCP/IP stack, Contiki
only needs about 10 kB of RAM and 30 kB of ROM. A typical Contiki
system has memory of the order of kilobytes, a power budget of the
order of milliwatts, processing speed measured in megahertz, and
communication bandwidth of the order of hundreds of kilobits/sec-
ond. This class of systems includes various types of embedded systems
as well as a number of old 8-bit computers.

A brief description of the core features of Contiki will be provided,
highlighting why they are of particular interest for building complex
IoT applications.

7.2.6.1 Networking
Contiki provides three network mechanisms:
• the uIP13 TCP/IP stack, which provides IPv4 networking;
• the uIPv6 stack, which provides IPv6 networking;
• the Rime stack, which is a set of custom lightweight networking pro-

tocols designed specifically for low-power wireless networks.

13 https://github.com/adamdunkels/uip.

326 7 The IoT in Practice

The IPv6 stack was contributed by Cisco and was, at the time of
release, the smallest IPv6 stack to receive IPv6-ready certification. The
IPv6 stack also contains the RPL routing protocol and the 6LoWPAN
header compression and adaptation layer.

The Rime stack is an alternative network stack that is intended to
be used when the overhead of the IPv4 or IPv6 stacks is prohibitive.
The Rime stack provides a set of communication primitives for low-
power wireless systems. The default primitives are single-hop unicast,
single-hop broadcast, multi-hop unicast, network flooding, and
address-free data collection. The primitives can be used on their own
or combined to form more complex protocols and mechanisms.

7.2.6.2 Low-power Operation
Many Contiki systems are severely power-constrained. Battery oper-
ated wireless sensors may need to provide years of unattended
operation, often with no way to recharge or replace batteries. Contiki
provides a set of mechanisms for reducing the power consumption
of the system on which it runs. The default mechanism for attaining
low-power operation of the radio is called ContikiMAC. With Con-
tikiMAC, nodes can be running in low-power mode and still be able
to receive and relay radio messages.

7.2.6.3 Simulation
The Contiki system includes a network simulator called Cooja
(Figure 7.11). Cooja simulates networks of Contiki nodes. The nodes
may belong to one of three classes:

• emulated nodes, where the entire hardware of each node is emu-
lated;

• Cooja nodes, where the Contiki code for the node is compiled and
executed on the simulation host;

• Java nodes, where the behavior of the node must be reimplemented
as a Java class.

A single Cooja simulation may contain a mixture of nodes from any
of the three classes. Emulated nodes can also be used, so as to include
non-Contiki nodes in a simulated network.

In Contiki 2.6, platforms with TI MSP430 and Atmel AVR microcon-
trollers can be emulated. Cooja can be very useful because of its emu-
lative functions, which help developers in testing applications. This
speeds up the development process: without a simulator the developer
would have to upload and test every new version of firmware on real

7.2 Software for the IoT 327

Figure 7.11 Screenshot of Cooja Contiki network simulation for an Ubuntu
system with Contiki 2.6 running on 41 nodes forming an IPv6/RPL/6lowpan
network.

hardware. This would be a long process, because most motes can only
be flashed through a (slow) serial port.

7.2.6.4 Programming Model
To run efficiently on memory-constrained systems, the Contiki
programming model is based on protothreads. A protothread is a
memory-efficient programming abstraction that shares features of
both multi-threading and event-driven programming to attain a low
memory overhead. The kernel invokes the protothread of a process in
response to an internal or external event. Examples of internal events
are timers that fire, or messages being posted from other processes.
Examples of external events are sensors that trigger, or incoming
packets from a radio neighbor.

Protothreads are cooperatively scheduled. This means that a Con-
tiki process must always explicitly yield control back to the kernel at
regular intervals. Contiki processes may use a special protothread con-
struct to avoid waiting for events while yielding control to the kernel
between each event invocation.

328 7 The IoT in Practice

7.2.6.5 Features
Contiki supports per-process optional preemptive multi-threading,
inter-process communication using message-passing events, and
an optional GUI subsystem with either direct graphic support for
locally connected terminals or networked virtual display with virtual
network computing or over Telnet.

A full installation of Contiki includes the following features:

• multitasking kernel
• optional per-application pre-emptive multithreading
• protothreads
• TCP/IP networking, including IPv6
• windowing system and GUI
• networked remote display using virtual network computing
• web browser (claimed to be the world’s smallest).

7.3 Vision and Architecture of a Testbed for the
Web of Things

With the aim to foster the development and diffusion of the IoT,
applications are starting to be built around the well-known web
model, leading to the advent of the so-called Web of Things (WoT).
The web-based approach has proved to be the driver for the wide
diffusion of the Internet and there is a common feeling that this
will apply also to the IoT [231]. WoT applications rely on specific
web-oriented application-layer protocols, similar to HTTP, such as
the Constrained Application Protocol (CoAP) [7] and, more generally,
protocols complying with the REpresentational State Transfer (REST)
architectural style.

We present here the design and deployment of a heterogeneous and
innovative WoT-based application-oriented testbed, called the Web of
Things Testbed (WoTT). Its main goal is to allow developers to easily
design and evaluate new WoT-oriented services and applications in
a real IoT environment and to effectively test human–object interac-
tion mechanisms, which will play a fundamental role in broadening
the range of IoT users. WoTT is particularly suited for this purpose
because its architecture is completely based on standard protocols and
mechanisms; it uses no custom or proprietary solutions that would
jeopardize the interoperability among nodes.

7.3 Vision and Architecture 329

The main goals of the WoTT can be summarized as follows:

• to hide low-level implementative details;
• to enhance network self-configuration, by minimizing human inter-

vention;
• to transparently manage, at the same time, multiple protocols and

platforms;
• to provide a platform for the design and testing of human-object

interaction patterns.

In order to properly test new WoT-related applications, the WoTT
consists of several types of node that differ in terms of both computa-
tional capabilities and radio access interfaces. Nonetheless, the nodes
can be grouped into two main classes: constrained IoT (CIoT) nodes
and single board computer (SBC) nodes. CIoT nodes are mainly
based on the Contiki OS and correspond to Class 1 devices according
to the terminology introduced in RFC7228 [229]. On the other hand,
SBC nodes are more powerful nodes, typically running Linux and
having multiple network interfaces. These correspond to Class 2
devices. No matter what the actual nodes really are, the standard
communication protocols and mechanisms used in the testbed make
it able to manage the diversity of nodes seamlessly, thus making it
possible to treat each and every node simply as an IP-addressable host.
Tables 7.9 and 7.10 show the details of the CIoT and SBC nodes used
in the WoTT.

Table 7.9 Constrained IoT nodes in the WoTT.

Constrained IoT nodes

Node Hardware OS Network interfaces

6 TelosB MCU: TI MSP430F1611
RAM: 10 kB
ROM: 48 kB

Contiki IEEE 802.15.4

20 Zolertia Z1 MCU: TI MSP430F2617
RAM: 8 kB
ROM: 92 kB

Contiki IEEE 802.15.4

10 OpenMote MCU: ARM Cortex-M3
RAM: 32kB
ROM: 512 kB

Contiki IEEE 802.15.4

330 7 The IoT in Practice

Table 7.10 Single board computer nodes in the WoTT.

SBC nodes

Node Hardware OS
Network
interfaces

20 Intel Galileo CPU: SoC X Intel®QuarkTM X1000
RAM: 256 MB
Memory (SD): 8 GB

[Linux]
Debian

IEEE 802.3

5 Raspbery Pi B CPU: Broadcom BCM2835
ARM11
RAM: 512MB
Memory (SD): 8 GB

[Linux]
Raspbian

IEEE
802.3/802.11

5 Arduino Yun Linux environment
CPU: Atheros AR9331
RAM: 64 MB
ROM: 16 MB

[Linux]
OpenWRT

IEEE
802.3/802.11

Arduino environment
MCU: ATmega32u4
RAM: 2.5 kB
ROM: 32 kB

Arduino

4 UDOO Linux environment
CPU: Freescale i.MX 6
ARM Cortex-A9 Dual core
RAM: 1GB
Memory (SD): 8 GB

[Linux]
UDOObuntu

IEEE
802.3/802.11

Arduino-like environment
MCU: Atmel SAM3X8E
ARM Cortex-M3
RAM: 100 kB
ROM: 512 kB

Arduino

7.3.1 An All-IP-based Infrastructure for Smart Objects

CIoT nodes are connected, at the physical layer, by IEEE 802.15.4 wire-
less links, while at the network layer IPv6 is used in combination with
6LoWPAN [230] and RPL (the routing protocol for low-power and
lossy networks). CIoT nodes equipped with sensors can act as CoAP
servers or clients running Erbium, which is a lightweight implementa-
tion of CoAP.

7.3 Vision and Architecture 331

Protocol Translation

SOs Delegate

Service Discovery

Resource Directory

IoT

HUB

Application layer

Internet

MQTT HTTP CoAP

TCP

IEEE 802.11 IEEE 802.15.4 IEEE 802.3

UDP

IPv4 & IPv6 + 6LoWPAN
Link Layer

Figure 7.12 The WoTT architecture and protocol stack with emphasis on the role
of the IoT Hub in the management of the testbed’s heterogeneous network.

As the CIoT nodes, SBC nodes can act as CoAP clients or servers,
with fewer constraints than implementations on SBCs. For example,
on Arduino Yún nodes, a Javascript application initializes a CoAP
server on an instance of node.js. Intel Galileo boards and Raspberry Pi
systems can support different languages, ranging from Python to Java.

The WoTT testbed, shown in Figure 7.12, is heterogeneous by
design, in order to enable smart objects to communicate seamlessly
with each other and to enable communications between the WoTT
and external Internet elements (e.g., the cloud, Internet hosts, or con-
sumers). Internet protocol (in particular, IPv6 or IPv6+6LoWPAN)
is universally considered a key communication enabler for the future
IoT. For this reason, the WoTT adopts IP as a common network
substrate, thus allowing for simple integration with the existing Inter-
net world. Figure 7.12 shows the IP-based protocol stack supported
by the WoTT. It is worth noting that all nodes in the WoTT use
standard protocols at all layers of the protocol stack. As can be seen,
several physical (PHY) and MAC protocols (e.g., IEEE 802.11, IEEE
802.15.4, and IEEE 802.3) as well as application layer protocols can
be used. The architecture also introduces an innovative network
element, called the IoT Hub, which operates at different layers of the
protocol stack in order to further enhance the interoperability among
communicating devices, by integrating several networks into a single
IP-based substrate and, at the same time, by implementing important
functions at the application layer. Due to their greater capabilities, in

332 7 The IoT in Practice

terms of computational power and networking, SBC nodes can be
used effectively to implement all the functions of an IoT Hub.

The Wi-Fi networking infrastructure is based on Cisco Connected
Mobile Experiences (CMX)14 and access points, which have already
been installed in the WoTT buildings and can be used to track devices
(for indoor localization purposes). In particular, the CMX platform
provides mobility services REST APIs, which allow developers to
enable service customization with location information in mobile
applications, such as location-aware equipment tracking, guest access,
and device-based services. This feature is currently used to build
user-location-aware IoT applications, which can “track and follow”
the user throughout the the WoTT building, enabling specific and
augmented interactions with the surrounding environment.

Focusing on the application layer, the WoTT currently supports
CoAP, MQTT, and HTTP. CoAP is a binary and lightweight web
transfer protocol built on top of UDP and follows a request/response
paradigm [7]. CoAP has been explicitly designed to work with
devices operating in low-power and lossy networks. MQTT is also a
lightweight publish/subscribe protocol suitable for constrained smart
objects, such as sensors or actuators, and runs on top of TCP. Finally,
HTTP is mainly used for communication between the WoTT and
external Internet actors or consumers, such as cloud storage services
or IoT-unaware clients. We note that, among the WoTT components,
the IoT Hub is the key IoT enabler, as it manages the different access
technologies and supports full IP connectivity among all objects.
By implementing various functionalities at the application layer, all
protocols listed in Figure 7.12 can coexist in the same environment.

We also note that the software for smart objects has been developed
with different programming languages. This underlines once more
that, thanks to the features provided at the application layer, develop-
ers can create new IoT applications easily and without any constraint
except for compliance with IoT standards.

7.3.2 Enabling Interactions with Smart Objects through
the IoT Hub

The WoTT does not simply enable communications between the IoT
actors; it represents a “uniform” super-entity, able to provide enhanced

14 Cisco Connected Mobile Experiences: http://www.cisco.com/c/en/us/
solutions/enterprise-networks/connected-mobile-experiences/
index.html.

7.3 Vision and Architecture 333

functionalities that go beyond the mere union of the features provided
by its components. As shown in Figure 7.12, in order to achieve this
holistic vision, the WoTT introduces a new and innovative network
element, called an IoT Hub (as presented in Section 6.6), which acts as
a gateway that can bridge and merge several networks, using various
communication technologies, into a single IP network.

The IoT Hub also implements several functions at the application
layer: it manages the services and resources available in the overall
infrastructure, thus playing a key role at this layer too. The use of an
IoT Hub is expedient for several reasons. The extreme heterogeneity of
IoT devices requires mechanisms for their management and the seam-
less interaction of humans and smart objects. Moreover, focusing on
data collection, due to their limited capabilities smart objects may not
be able to handle large numbers of concurrent requests, thus making it
preferable to limit direct access to them. In other cases, extremely lim-
ited devices might act as clients to implement data collection behavior.

Efforts have been made to standardize the design of IoT Hubs.
A relevant example is HyperCat [232], which introduces standard
specifications to allow servers to expose JSON-based hypermedia cat-
alogues as collections of URLs. Thus, IoT clients are able to discover,
using REST methods, data available on servers in HTTPS and JSON
format. Unlike the IoT Hub of the WoTT, HyperCat works at a higher
level of abstraction, as it is intended to allow reasoning and service
composition based on IoT concepts, and does not take into account
direct interactions with constrained devices, where specific protocols
(e.g., CoAP) should be adopted to minimize energy and memory
consumption.

From a networking standpoint, the IoT Hub is a fog node [205],
placed at the edge of multiple physical networks with the goal of cre-
ating an IP-based IoT network. The IoT Hub plays a fundamental role
by implementing the following functions at the link and application
layers of the protocol stack:

• Border router: the IoT Hub bridges one or more networks (e.g., sev-
eral IEEE 802.15.4 networks).

• Service and resource discovery: the IoT Hub is able to discover the
smart objects available in the network and their hosted resources.

• Resource directory (RD): the IoT Hub complies with the relevant
specifications [14], and maintains a list of all resources available in
the bridged networks creating a centralized entry point for applica-
tions that need to perform resource lookup.

334 7 The IoT in Practice

• Origin server (OS): the IoT Hub provides a CoAP server that hosts
the smart object’s resources.

• CoAP-to-CoAP (C2C) proxy: the IoT Hub provides proxying
capabilities for CoAP requests from external clients targeting
constrained nodes.

• HTTP-to-CoAP (H2C) proxy: the IoT Hub provides HTTP-to-CoAP
cross-proxying (i.e., protocol translation) in order to allow HTTP
clients to access to CoAP resources.

• Cache: the IoT Hub keeps a cache with a representation of most
recently accessed resources in order to act as a smart object dele-
gate, minimizing latency and reducing load on constrained devices.

By adopting standard mechanisms and communication protocols,
smart objects do not depend on the IoT Hub for their operation; in
addition, the IoT Hub is able to mitigate the presence of non-standard
components that might not interoperate with standard-compliant
devices. It is important to point out that the presence of the IoT Hub
is not mandatory for interaction and interoperability, but its presence
extends the IoT network and increases its capabilities, by simplifying
and hiding complex and important tasks such as service discovery
and routing.

7.3.2.1 Integration Challenges
The main challenges encountered in the deployment of the WoTT are
related to design: the definition of the different elements and their
functionalities, the representation of the different resources and their
relationships through suitable hypermedia, and maintenance of com-
patibility with standards.

The efforts devoted to the design of the WoTT, together with the
IoT Hub and the use of standards, has simplified the deployment
process, making the integration of all different elements straightfor-
ward, notwithstanding their heterogeneity. In particular, the WoTT
hides critical implementation issues encountered at lower layers. For
example, in a constrained network (e.g., IEEE 802.15.4) the resource
advertisement feature is critical, requiring strict assumptions about
energy and memory consumption on each constrained device. In
Section 4.4, the advertisement of nodes belonging to the network was
analyzed, and we derived a multicast solution that allows a reduction
in energy consumption. The end users (application-oriented) of the
WoTT are not concerned with these implementation details.

7.3 Vision and Architecture 335

Another implementation challenge that is hidden from end users
was the creation of IPv4 and IPv6 networks, and the configuration of
networks elements (e.g., routers and access points), in order to create a
unique IP-addressable network. The firmware provided with common
network elements typically does not allow these unusual configura-
tions. To overcome this limitation, the WoTT network components
have been flashed with more customizable and advanced firmware,
such as Tomato.15

7.3.3 Testbed Access and Security

With its goal of becoming a publicly available platform, the WoTT
complies with security policies and mechanisms, adopting strong
defense measures in order to counteract security threats. These
threats may come from external environments, as well as from mali-
cious internal IoT entities. The experience gained from the years of
development of the web provides useful security technologies and
mechanisms that can be taken as a reference and applied to enhance
the protection and reliability of IoT environments.

With access by external clients, the WoTT is able to manage and
authenticate request issuers, defining at the same time processing poli-
cies and rules. To comply with these specifications, the WoTT allows
external connections through VPN and SSH tunnels, using credentials
issued by WoTT administrators.

Several security mechanisms for smart object interaction are
implemented within the testbed. TLS (in conjunction with HTTP)
and DTLS (the secure transport for CoAP) are implemented on a
set of devices that host resources that need to be accessed through
secured application protocols. The IoT Hub implements both security
protocols in order to provide secure resource access through proxying.
Of course, end-to-end security through proxying cannot be ensured,
as no TLS-to-DTLS mapping is defined.

7.3.3.1 The Role of Authorization
While DTLS and TLS are implemented to enforce confidentiality and
authenticity of communication between endpoints, real-world IoT
systems must be able to manage multiple users accessing the resources
deployed in a smart environment. This is when authorization comes

15 Tomato firmware: http://www.polarcloud.com/tomato.

336 7 The IoT in Practice

into the picture: mechanisms must be defined in order to ensure
that only authorized parties can interact with objects. For example,
in a multi-occupant building hosting the WoTT, offices should be
able to be unlocked only by those who have been granted access and
not just to anyone who has discovered a “smart lock”. Even though
authorization is obviously a critical issue, research has not yet focused
on defining mechanisms to grant authorization and manage access
policies in IoT scenarios. In order to take this issue into account,
the WoTT implements an authorization architecture based on the
OAuth protocol, called IoT-OAS (see Section 5.3.2). This architecture
implements a lightweight delegation approach to authorization.

7.3.4 Exploiting the Testbed: WoT Applications for Mobile
and Wearable Devices

Thanks to the high-level of abstraction and full interoperability of the
WoTT, web, mobile, and wearable WoT applications have been devel-
oped using it (Figure 7.13). Due to the need to fill the gap between the
mobile/wearable world and the IoT, it is important to define innovative
interaction patterns, through which developers might build, deploy,
and connect their applications so that these can be used in a simple
way by end users. To validate the benefits of the WoTT and demon-
strate the ease of integration of a newly deployed application with the
testbed, wearable-enabled and mobile-oriented applications have been

Web

Wearable

Mobile

Figure 7.13 Web, mobile, and wearable REST-based testbed applications.

7.3 Vision and Architecture 337

developed with the goal to start interacting with “things” in a natural
way, similar to what a person experiences everyday on the web.

Thanks to their portability, wearable and mobile devices are attrac-
tive ways to track people’s actions in the real world. Indoor localization
features have been developed in the WoTT, using triangulation tech-
niques implemented through the CMX access points. The availability
of localization APIs in the Cisco CMX system allows applications
to be built that take into account the location and movement of
users throughout a building. This is an extremely interesting feature,
which can pave the way for development of applications that can
actually follow the user and even anticipate their movements in
the building. Together with access-point-based localization, the use
of on-board inertial measurement units can further improve the
tracking capability.

Mobile devices play an important role in our architecture. Besides
interacting with the deployed smart objects, they can also act as smart
objects, providing data generated by their onboard sensors. Mobile
devices can thus be considered as WoTT nodes, making the WoTT
a highly dynamic and evolving system.

By providing a uniform and application-oriented platform, the
WoTT can be used effectively by developers to create and test real-
world IoT applications easily and in short time, thus making the
WoTT more attractive than other currently available platforms. This
is made possible by the ready-to-use capabilities and the direct/active
interactions that a deployed application may have with the resources
availables into the WoTT. From an operational point of view, devel-
opers only have to run their applications involving testbed resources,
without any additional need to virtualize environment services, and
becoming part of a WoT scenario, in which consumers are not only
“readers”, but active participants.

Based on the capabilities provided by the WoTT, we have developed
a mobile and wearable application (Figure 7.13), which recreates the
basic steps envisioned for a WoT application that can really be used by
anyone. These applications have been tested on the Android Wear plat-
form using LG G watches and Android 5.0.1 smartphones. In the near
future, as more and more smart objects are deployed, vendor-provided
apps will no longer be the typical means to interact with things: a more
standard approach will be needed in order to do so effectively.

The developed application performs the following steps. The mobile
device first discovers smart objects in its proximity, proactively

338 7 The IoT in Practice

and reactively, by means of standard service discovery and resource
directory mechanisms, and then forwards the collected information to
its connected wearable device interface. Through wearable interfaces,
a user can see and browse a list of all the resources that have been
discovered and select one to interact with. Interactions are performed
according to the function set specified by the selected smart object
(e.g., a light bulb might provide an on/off switch, while a temperature
sensor might just provide a way to read its value). Resources and
interactions are revealed gradually, according to the REST paradigm,
so that the application can adapt itself dynamically.

We note that WoTT resources can be deployed on different plat-
forms (e.g., different smart objects) and using heterogeneous proto-
cols. However, this is completely transparent to a developer, who can
access all these resources, only constrained by the need to use stan-
dard protocols. This possibility is granted by the IoT Hub’s abstraction
ability and is not a feature of other existing testbeds (e.g., SmartSan-
tander).

A user can interact with smart objects through one of the following
approaches:

• Polling allows the user to retrieve the value associated with the
queried resource, by performing a CoAP GET request.

• Observing can be used to receive asynchronous updates when the
value of the specified resource changes, adopting an efficient mech-
anism and avoiding the need for periodic data polling.

• Acting is used to set the value of a specified resource, depending on
the function set provided by the resource.

The observing approach, which was not defined in HTTP, is a
lightweight CoAP-oriented interaction mechanism [9]. Resource
observing is achieved by ussuing a CoAP GET request containing
an Observe option. This option instructs the target smart object to
add a new subscriber, which will receive, in push mode, subsequent
resource updates. Subscribers also have the ability to stop observing a
resource at any time, by unsubscribing from updates.

7.3.5 Open Challenges and Future Vision

The use of standard protocols, the use of well-known web-based
approaches, and the widespread diffusion of hardware platforms are

7.3 Vision and Architecture 339

changing and opening the IoT world to new developers, businesses,
and users. Against this dynamic and evolving background, the avail-
ability of real and accessible resource-oriented testbeds that allow
active and direct interaction with low-level nodes and services is
one of the key enablers for the future adoption of the IoT by a
broad audience, and even for the final transition from the IoT to
the WoT.

The ongoing WoTT experience provides a concrete example of
new architectural and networking solutions that address important
open issues and challenges for the IoT. The experience gained in
designing and implementing our testbed has confirmed that there is a
concrete need for open evaluation platforms aimed at integrating and
experimenting with innovative solutions, in order to develop appli-
cations that can really bridge today’s gap between users and things.
The heterogeneity (in terms of hardware and software) of our testbed,
testifies to how the proper use of standard protocols (e.g., HTTP,
CoAP, and MQTT) and interaction paradigms and approaches (such
as REST and service/resource discovery), are fundamental to creating
transparent and dynamic interactions among multiple smart objects
and personal user devices, such as smartphones and wearables.
Moreover, this heterogeneity can be extended, with limited effort, by
improving the IoT Hub features (e.g., adding support for Bluetooth
devices). This would open up the WoTT to a new emerging category
of IoT-enabled devices, namely Bluetooth Low Energy, thus allowing
its integration with other service discovery mechanisms, such as
UriBeacon.16

Nevertheless, important open issues still need to be tackled to
bring the IoT into our daily life. Security, interoperability, data pro-
cessing, human interaction, and easy development and deployment
are the keywords that will characterize academic and industrial R&D
activities over the next few years. IoT-application-oriented testbeds
represent the perfect experimental playgrounds to boost and support
development of IoT applications, creating a common space that
developers, hardware manufacturers, and companies can exploit in
order to reach the goal of making the IoT accessible and easy to use
for everyone, just as the Internet is right now.

16 The UriBeacon Open Standard, (Apr 2015) http://uribeacon.org.

340 7 The IoT in Practice

7.4 Wearable Computing for the IoT:
Interaction Patterns with Smart Objects in
RESTful Environments

Over the next few years, the IoT is expected to become a reality, merg-
ing the social world, the physical world, and the cyber world to enable
new applications and forms of interactions between humans and con-
nected smart sensing/actuating devices. As billions of smart objects
will be deployed in the environment, users should be able to discover
and interact with objects in their proximity in a seamless and transpar-
ent way. While smartphones have become an extremely popular com-
puting device, the advent of smart wearable devices, such as Google
Glass and the Apple Watch, has provided even more effective means
to bridge the gap between humans and smart objects. In this section,
we analyze the characteristics of wearable applications for IoT scenar-
ios and describe the interaction patterns that should occur between
wearable/mobile devices and smart objects.

7.4.1 Shaping the Internet of Things in a Mobile-Centric
World

In recent decades, the Internet has allowed people to access and
consume services on a global scale, using traditional hosts and always-
connected mobile devices, such as their smartphones, typically using
the World Wide Web. By connecting objects and devices, the IoT
will fully exploit the potential of networking and enable innovative
services to be offered in a wide range of scenarios, such as home and
building automation, smart cities, and healthcare, integrating new
paradigms for human-to-machine (H2M) and machine-to-machine
(M2M) interactions. Many IoT applications will allow people to inter-
act with smart environments, allowing them to obtain information
and to change the environment according to their needs and prefer-
ences, sometimes without actually being in the loop. IoT applications
will take advantage of the wide diffusion and pervasive deployment
of smart objects: tiny devices equipped with a microcontroller, a
communication interface (wired or wireless), a power supply, and
a set of sensors and/or actuators to be used to interface with the
surrounding environment.

7.4 Wearable Computing for the IoT 341

Several players are developing innovative IoT-related products in a
variety of fields, which are starting to reach end-users, who are now
becoming aware of the integration of physical and cyber worlds. The
“gold rush” of the IoT-era, driven, on one hand, by developers’ will
to demonstrate the feasibility of interconnecting everyday devices to
people and, on the other hand, by their hope to turn their custom solu-
tions into standards for the general public, has created a plethora of
closed vertical solutions. This is leading to a highly fragmented market:
a babel of incompatible solutions, as opposite to a highly standardized
and interoperable environment, which is what the Internet (of Things)
should be [231]. In order to prevent the IoT reaching a dead end due to
fragmentation caused by these vertical solutions, much effort has been
expended in research projects and standardization organizations, such
as IEEE, IETF, and the IPSO Alliance.

The successful model for communication represented by the Web
has been considered as a reference point for the IoT as well. We can
now assume that the IoT will be a network of heterogeneous intercon-
nected devices; this will be the infrastructure for the WoT.

Mobile devices (smartphones and tablets) have become the most
popular computing devices in the world, topping the per-capita rate of
penetration of personal computers for the first time in mid-2012 [233].
We are living in a mobile-centric world, characterized by symbiosis
and interdependence between users and their mobile devices, to the
point where one cannot work without the other. Thanks to their rich
capabilities, mobile devices are handy and ready-to-use gateways to all
IoT objects deployed nearby or far away: a cyber-“Swiss-army knife”
for the IoT. This ease of access be enhanced further by the evolution
of wearable computing, which has the potential to augment the ways
people interact with services (e.g., through voice control, gestures, or
touch) or provide information to services (e.g., heart rate monitoring,
fitness applications). The smartphone is the enabler for a user who
wants to control and interact with smart objects in his proximity and
wearable devices. Interaction with smart objects through wearable
devices will represent a quantum leap towards the full integration of
the social world, the cyber world, and the physical world, and will be,
in fact, a milestone for the widespread adoption of the IoT. The interac-
tion between wearable devices and IoT objects should occur through
well-defined patterns, which must take into account their nature,
while providing maximum usability and the best user experience.

342 7 The IoT in Practice

7.4.2 Interaction Patterns with Smart Objects through
Wearable Devices

The evolution of mobile and wearable computing has changed the way
people use online services. They are now always connected, whether
at home or on the go. In this context, there is a concrete need to fill the
gap between mobile devices and the IoT. A paradigm shift in specific
aspects is needed to let people access and use the IoT with the same
simplicity as when accessing the Internet and, possibly, to enable new
and more natural forms of interactions, which will broaden the range
of IoT users.

7.4.2.1 Smart Object Communication Principles
The idea of an IP-based IoT has been around for years and is now
considered as a fact. The adoption of the IP protocol for smart object
addressing and communication is the driver to full interoperability and
integrability of the IoT with the existing Internet. In particular, the
use of IPv6 has been foreseen as the solution to the management of
billions of globally-addressable devices. A fundamental principle that
has driven IoT research and the work of standardization institutions
is the maximization of the reuse of standard Internet protocols and
mechanisms. Due to the limitations of low-performance IoT devices,
it is not always possible to use the traditional TCP/IP protocol stack.
New energy-efficient and low-overhead communication protocols and
data formats, which take into account group communication, mobil-
ity, and interactions among multiple devices, have been designed. The
introduction of 6LoWPAN has solved the problem of bringing IP to
low-power devices. Thanks to the definition of common standards, the
IoT is ready to reach the next level: the Web of Things (WoT).

The Web is by far the most popular and familiar interaction model
on the Internet. The WoT is being designed around well-known
concepts and practices derived from the Web, such as the REST
paradigm. The REST paradigm was introduced to loosely couple
client applications with the systems that they interact with and to
support long-term evolution of systems and provide robustness.
At the application layer, CoAP has been designated as the standard
protocol for the WoT, similar to the role of HTTP for the Web. In fact,
CoAP has been designed to work with HTTP, to which it maps easily
for integration purposes, by inheriting from it the identification of
resources through URIs, the request/response communication model,

7.4 Wearable Computing for the IoT 343

and the semantics of its methods. However, it is not possible to fully
map CoAP to HTTP for a number of reasons. In particular, CoAP is a
binary UDP-based protocol, while HTTP implies connection-oriented
communications. CoAP also introduces some significant enhance-
ments and optimizations that are relevant for low-power devices,
such as support for group communication and resource observation.
This latter feature allows client applications, after an initial request, to
receive updates for a given resource in successive response messages,
without the need to perform periodic polling. Resource observation
introduces a new communication paradigm within REST. Note that
REST is not the only communication pattern that is ever going to
be adopted in the IoT, similarly to what happens on the traditional
Internet: protocols using publish/subscribe mechanisms fit well when
a single source delivers information to multiple receivers.

7.4.2.2 Interaction Patterns
A smartphone is required when using wearable devices: it is responsi-
ble for performing all the heavy duty and complex tasks (notably pro-
cessing and communication). Wearable devices are, in fact, extensions
of a mobile devices, the latter acting as central hubs. In order to enable
truly seamless and practical interaction with smart objects through
wearable devices, it is crucial that the smartphone takes care of these
tasks behind the scenes. In smart environments, wearable devices will
thus play the role of true enabler of natural interactions with things,
which is what people expect. As pointed out by Sergey Brin in a TED
talk at the time of the launch of the Google Glass, the use of smart-
phones isolates people, making them constantly and obsessively look-
ing down at their devices [234]. The Google Glass (and, in general,
any wearable device) should let people keep their heads up, instead,
thus allowing for simpler and more natural interactions. This change
is going to have an even bigger impact when users start interacting
with a myriad of smart objects, rather than just texting or checking
emails.

Wearable devices can be classified into two categories. Passive
wearables do not require any direct human interaction (e.g., heart rate
monitors and step counters) and are therefore tightly coupled with a
mobile device hosting a custom app to control them. Active wearables
(e.g., smart watches and glasses) provide information to users and
can be used as sources of input, for control of the wearable itself and
also the mobile device they are connected to. As a consequence, they

344 7 The IoT in Practice

List

Social World Cyber World

Physical World

Detail

Get

Observe

Update

Figure 7.14 Interaction patterns between wearable devices and smart objects.

can extend their reach to other devices, which can be located in their
proximity or at a distance. For our purposes, we focus exclusively on
active wearables, as they should be the drivers of interactions with
smart objects.

Figure 7.14 shows the interaction patterns that we envision between
humans, using wearable devices, and smart objects that may be around
them. As described above, smartphones and wearable devices are the
bridge between the social world (users), the cyber world (networked
hosts), and the physical world (connected smart objects). Typically,
there are some questions that users might ask when trying to interact
with a smart environment:

1) What objects are around me?
2) Do I have the right privileges to control or interact with it directly?
3) What is a given object? What can it do and what can I do with it?
4) How can I interact with it?

In order to answer the above questions and provide a natural
sequence of interactions, we have envisioned an operational flow,
which can be summarized as follows:

• The smartphone discovers the smart objects in its proxim-
ity (Q1) for which the user has been granted the appropriate
access privileges (Q2), by means of suitable service discovery
(e.g., ZeroConf, as presented in Section 4.3, or low-power radio

7.4 Wearable Computing for the IoT 345

beacon broadcasting) and resource discovery (e.g., CoAP resource
directory) mechanisms, and presents this information on the
wearable device interface.

• The user can select one item (using vocal input or touch) and
get detailed information related to the selected resource, com-
bining the information retrieved in the previous step with other
descriptors that can be retrieved on the fly, such as the function
set that can be used to operate the resource [55] or a custom user
interface (Q3).

• The user can then browse through the available forms of interac-
tion with the selected resource, through specialized interfaces for
the possible actions that can be performed (Q4).

• The user interacts with the resources, always using the smartphone
as a bridge to perform the actual communication with smart
objects, adopting one of the following methods:

– Get: this method allows the user to retrieve the value associ-
ated with the resource, by performing a CoAP GET request (e.g.,
to check the status – closed or open – of a smart-lock-equipped
door).
– Observe: this method employs an efficient mechanism for
receiving asynchronous updates when the value of a resource
changes, thus avoiding having to periodically poll for data [55].
This is achieved by performing a CoAP GET request containing
an Observe option to instruct the object to send updates. An
observe relation can be then torn down at any time (e.g., to
monitor the temperature of a room so that a thermostat can be
activated).
– Update: this method is used to act upon a resource to set its the
value, by performing a CoAP POST or PUT request, depending
on the function set provided by the resource (e.g., to switch lights
on or of).

The use of CoAP is not strictly required: the presence of cross-
proxies, which might perform protocol translation, can enable the
same interactions with CoAP-unaware clients that may use HTTP.

7.4.3 Implementation in a Real-world IoT Testbed

Following the interaction patterns described above, a wearable-based
application for interacting with smart objects has been implemented

346 7 The IoT in Practice

and tested within an IoT testbed deployed inside our department,
with 70 IP-addressable devices running CoAP servers that host
sensing and actuating resources. The IoT testbed consists of several
types of nodes, which differ in terms of computational capabilities
and radio access interfaces. The considered nodes can be grouped
into two main classes: 36 constrained IoT nodes and 34 single board
computer (SBC) nodes.

The constrained IoT nodes are Class 1 devices, according to the ter-
minology introduced in RFC 7228 [229], based on the Contiki oper-
ating system and using IEEE 802.15.4 radio. Specifically, the following
constrained IoT nodes were used:
• 6 TelosB17

• 20 Zolertia Z118

• 10 OpenMote-CC2538.19

The SBC nodes are Class 2 devices, typically running a Linux operating
system and with multiple network interfaces. Specifically, the follow-
ing SBC nodes were used:
• 20 Intel Galileo20

• 5 Raspberry Pi Model B21

• 5 Arduino Yún22 (dual Linux/Arduino environment)
• 4 UDOO23 (dual Linux/Arduino environment).
The IoT testbed is purposely heterogeneous in order to simulate the
expected real-world IoT conditions, characterized by an extremely
high degree of diversity of smart objects. It also highlights how the use
of standard communication protocols and mechanisms, combined
with our envisioned operational flow, can enforce interoperability and
effective interactions among applications, in a real WoT fashion.

The mobile/wearable application was developed on the Android
Wear platform using LG G watches and Android Lollipop
smartphones. Figure 7.15 shows screenshots of the application

17 http://www.memsic.com/userfiles/files/Datasheets/WSN/
telosb:datasheet.pdf.
18 http://www.zolertia.com/ti.
19 http://www.openmote.com/hardware.html.
20 http://www.intel.com/content/www/us/en/do-it-yourself/
galileo-maker-quark-board.html.
21 http://www.raspberrypi.org/products/model-b/.
22 http://arduino.cc/en/Main/ArduinoBoardYun?from=Products
.ArduinoYUN.
23 http://shop.udoo.org/eu/product/udoo-dual-basic.html.

7.4 Wearable Computing for the IoT 347

Wearable Data Layer API (Bluetooth)
CoAP
Application transition

View 1 View 2

View 3c View 5

View 3b View 4b

Observe

Get

7

5

432

6
1

View 4aView 3a

Figure 7.15 Mobile/wearable application for interaction with smart objects:
operational flow with indication of communications and screenshots of the
implemented Android application.

running on the smartwatch, and how these map to the previously
described flow.

There are essentially three actors involved in the application’s
lifecycle: the smartphone, the wearable device, and the smart objects.
Each operation, which may be initiated by any of these, involves an
information exchange that affects them all. The smartphone is the
gateway between the smart objects and wearable devices, as shown
in Figure 7.14. The communication between the smartphone and the
smart objects occurs using CoAP, which is based on the Californium
library [94]. The smartphone application (SA) communicates with
the wearable companion application (WA) using the Android Wear-
able Data Layer API, which uses Bluetooth for communication. At
startup (step 1), SA performs resource discovery using a combined
mechanism:

• using ZeroConf, it discovers CoAP servers, whose lists of resources
are then retrieved by performing a GET request to the /.well-
known/core URI;

• a multicast GET request to the /.well-known/coreURI is sent
to all smart objects in the network, which return their lists of hosted
resources.

348 7 The IoT in Practice

After the SA has gathered the list of all available resources, it
pushes this information to the WA (step 2), which presents the list
of resources to the user (View 1). The user selects a resource of
interest, and is presented with a dedicated detail view of that resource
(step 3), which includes resource-specific information, such as its
human-readable name and type (View 2). According to the interface
of the resource [55], the WA presents (in a 2D picker) swipeable cards
that contain action buttons, which can trigger interactions with the
resource, using the previously described Get, Observe, and Update
schemes (Views 3a, 3b, and 3c, respectively). Upon user selection (for
instance, in Figure 7.15, a Get interaction is selected), a message is
sent by the WA to the SA (step 5), which then issues the correspond-
ing CoAP request and receives the response from the smart object
(step 6). The response is then processed and the results are pushed to
the WA (step 7) and then presented to the user (View 4a). In case of
resource observation (View 3b), when the smart object sends updates
to the SA, the SA pushes this information to the WA, which presents
a notification (View 4b). A dedicated view is also available to the user
to allow them to stop observing resources (View 5).

7.4.3.1 Future Vision: towards the Tactile Internet
The strong evolutionary trend in several ICT fields, from electronics
to telecommunications and computing, has brought significant inno-
vations in the way people use and interface with the environment. On
one hand, mobile and wearable computing have allowed people to be
connected anywhere and at anytime and to consume services while on
the go. On the other hand, cheap embedded systems and low-power
operating systems and communication protocols have paved the way
to the development of the IoT. Although these fields have evolved
independently, they are converging and complement one another
more and more, thanks to the flexibility and inherent capabilities of
smartphones. The combination of and integration between the IoT
and mobile/wearable devices is allowing industry and researchers to
envision a path towards a true Internet of Anything [235], capable of
connecting everyone and everything.

Improvements in communication technologies, in terms of ever-
increasing speed, reliability, and security, are paving the road to
the delivery of groundbreaking applications to the general public.
While the IoT is being designed around low-power devices with
limited capabilities, the enhancements that future 5G networks are

7.5 Effective Authorization for the Web of Things 349

going to bring about will foster the development of services and
applications that will no longer suffer from the strong limitations of
earlier technologies, such as 4K video streaming or real-time remote
control. Combined with fog computing techniques [205], aiming at
minimizing latency and enabling real-time applications by moving
some processing load to the edge of local networks, the idea of
end-to-end communication in times of the order of milliseconds is
going to become a reality. These technologies will lead to the ability to
perform haptic (meaning touch-based) interactions with connected
things, either in the proximity or at a distance, thus bringing about the
rise of the “Tactile Internet” [236] and its application to healthcare,
education, robotics, and many others fields. Wearable devices will
play a significant role in this mission and are already set to be the
drivers of many kinds of haptic interactions with things.

Thanks to the IoT, users will no longer need to be in charge of mon-
itoring and controlling things when this is not needed. However, they
will still be able to interact with their surroundings when they want to
do so. Natural interaction patterns between users and smart objects
through wearable devices will be a key enabler to reach this goal: these
models will guide and teach users by increasing their awareness with-
out requiring them to learn new paradigms.

7.5 Effective Authorization for the Web
of Things

By connecting billions of “smart objects”, the IoT is set to have a dra-
matic impact on how people interact with the surrounding environ-
ment, whether at home or in public places. With forecasts of such a
gigantic number of deployed smart objects, much attention is being
given to the societal and economic impacts of the IoT.

Technologies such as Apple’s HomeKit24 or the new Google
Brillo/Weave duo,25 are just two examples of how big players have
approached the IoT; that is, by trying to affirm proprietary solutions
as standards, just as in the early days of the Internet. In order to
tame the extreme diversity of smart objects, in terms of processing
capabilities, communication technologies, operating systems, and

24 https://developer.apple.com/homekit/.
25 https://developers.google.com/brillo/.

350 7 The IoT in Practice

implemented functions, in recent years much effort has been dedi-
cated to defining standard mechanisms and protocols that will actually
enable things to be connected to each other and with the Internet.
Moreover, the experience gained in the design of the traditional
Internet is a valuable asset that can be exploited in order to avoid
making the same errors and seeing the same issues as encountered
over the last 25 years of the Internet.

From a business standpoint, the time is ripe for IoT products to reach
the market. However, there is still much effort required to make the IoT
simple to use, practical, and effective, in order to broaden the range of
users and to show the real capabilities of what the IoT can do, instead
of putting on the market products that are attractive only to special-
ists and experts. The expectations and concerns of users about new
products are primarily related to the possibility to interact with smart
devices in a seamless and effective way and to do so securely. While
tasks that can be achieved with a certain product or application are
business matters that go beyond the domain of pure technology, there
are requirements that must be met to ensure that the IoT will not head
into a dead end.

The Web of Things (WoT) paradigm pushes interoperability further,
by letting applications interact using standard and uniform interfaces,
with the same simplicity experienced on the web. Besides RESTful-
ness, the WoT will also have additional requirements, such as support
for different communication paradigms including one-to-many com-
munication, and support for publish-subscribe patterns [237]. Thanks
to these standardization efforts, we can consider interoperability more
as a business issue rather than a technological one.

In the future, users (and things) will be dealing with a the large
number of smart devices deployed either in private or public spaces.
Even if interoperability is ensured, it is not feasible to manually
configure each and every device in order to discover which objects are
nearby and which functions they provide. In order to let applications
be ready to operate with devices with minimal (or no) configuration,
mechanisms for the discovery of devices, services, and resources have
been proposed, as presented in Chapter 4. These functions may also
be implemented on specific network elements, such as IoT Hubs (see
Section 6.6), which can act as communication enablers and provide
discovery as a service.

Applying Web technologies to the physical world, leading to the
“Physical Web”[231], will enable simple interactions with and among

7.5 Effective Authorization for the Web of Things 351

things. In this context, the concerns of users about new products are
primarily related to secure access; that is, only parties with proper
authorization must be able to interact with smart objects. However,
in the rush to launch IoT products, security and authorization issues
have not been taken into proper consideration from a standardization
and long-term perspective. Secure and authorized access to smart
objects has typically been provided through product-related cloud
platforms, which mediate between a smartphone app and the smart
object. Notwithstanding this, standard and effective mechanisms for
managing authorized access to things are required to really make
using and sharing things with others simple and safe. In this section,
we present a standards-based authorization framework for WoT
applications, which allows users to effectively define fine-grained
policies to access shared resources. The proposed framework relies
on the IoT-OAS architecture (Section 5.3.2), which implements a
delegation strategy for authorization. The use of IoT-OAS makes it
feasible to let smart objects implement effective access policies to
hosted resources and to minimize the amount of processing load.
There are also other benefits, such as

• remote management of access policies without direct intervention
on smart objects;

• extension of smart object battery lifetimes;
• scalability, in terms of the number of external clients that can access

resources.

IoT-OAS is suitably extended by integrating a simple set of messages
that can be used to manage ownership and shared access to resources,
with minimal operation required by the actors involved. An imple-
mentation of the complete framework is presented here in order to
show the simplicity of the proposed approach and to highlight all the
benefits that it can introduce.

In the WoT. besides user authentication, things will need to
authenticate in order to communicate securely. Password-based
authentication, which works fine with humans, does not apply well to
things: embedding confidential information in (possibly unattended
and vulnerable) objects might not be the safest option. Moreover, for
constrained devices, traditional encryption algorithms and security
protocols used on the Internet, such as TLS, might not be feasible.
Lightweight cryptographic algorithms, such as PRESENT, TEA, and
SEA, with shorter keys, have been proposed to provide security for

352 7 The IoT in Practice

these application contexts. At the same time, lightweight secure
transports, such as DTLS (used in conjunction with CoAP, an
arrangement denoted as CoAPs), might be preferred over their
connection-oriented equivalents.

Authentication alone is not enough to provide sufficient safety and
security in the IoT, where the cyber world and physical world will
merge. Authorization issues must be taken into account to ensure
that access to sensing and actuating devices, both in private and
public spaces, occurs only by authorized parties. The Delegated CoAP
Authentication and Authorization Framework (DCAF) [193], pro-
posed by the IETF Authentication and Authorization for Constrained
Environments (ACE) Working Group, defines a protocol to delegate
the establishment of a DTLS channel between resource-constrained
nodes and external clients. DCAF targets scenarios where CoAP
requires a secure transport. Even though the delegation approach
is expedient to reduce the processing load and requirements on
constrained nodes, DCAF does not take into account authorization
aspects that are needed when third-parties access resources.

A reference approach to third-party access to resources is OAuth
[173, 175]. OAuth has been used effectively for online social networks
that provide access through RESTful APIs. However, OAuth is based
on HTTP, which cannot always be used as a communication protocol
with smart objects.

When referring to authorization in the WoT, there are complex
problems that need to be solved. Object owners might want to
restrict access to their resources, while still being able to grant access
privileges to authorized parties (e.g., a person might want to share
access to a home smartlock with their spouse, but not with any other
individual). These problems can be categorized as:

• owner-to-owner authorization (when the object owner authorizes
himself to control an object);

• owner-to-any authorization (when the object owner authorizes
other parties to control an object he owns) [237].

Owner-to-owner authorization is addressed by OAuth 2.0 [175]. How-
ever, while and the user-managed access profile [238] of OAuth 2.0
addresses owner-to-any authorization in the web, it does not suit con-
strained environments. Owner-to-any authorization in the WoT will
be an important and common scenario and needs to be addressed
effectively.

7.5 Effective Authorization for the Web of Things 353

7.5.1 Authorization Framework Architecture

The proposed framework builds on and completes the IoT-OAS
architecture, introducing mechanisms for the issuing of access tokens
that can be used to access resources in IoT applications. The IoT-OAS
architecture introduces a delegation approach to authorization that
can be used effectively to manage and enforce fine-grained access
polices for any kind of resource, either in the Web for in the WoT.
IoT-OAS provides a verify() function that can be invoked by smart
objects or intermediate network elements, such as proxies, called
service providers, that need to check incoming requests from service
consumers before serving them, as shown in Figure 7.16. The presence
of IoT-OAS is transparent to requesting parties, which can therefore
operate without any change required in their implementation.

7.5.1.1 System Operations
The system comprises four different actors:

• SO: the smart object, characterized by an identifier (UUID), which
hosts some resources;

• u1: the owner of SO;
• IoT-OAS: the delegation authorization service;
• u2: a user, who does not own SO, but is going to control it.

Users can log on to IoT-OAS using any suitable authentication mech-
anism it accepts, such as OpenID, Facebook login, or Google. Upon
login, users are assigned an access token to be used for any interaction
with IoT-OAS. We assume that u1 and u2 already have accounts on
IoT-OAS. Alternatively, accounts can be created on the fly by linking
to Google or Facebook accounts.

Service

Provider IoT-OAS

Permission

Store

Service

Consumer

response

verify(request)

verification response

1

4

2

3

request

(including access

token)

Figure 7.16 Verification of access grant with IoT-OAS.

354 7 The IoT in Practice

Table 7.11 Authorization framework message specification.

API Input parameters Description

register Device UUID Add a new device to
the list of owned devices

request Device UUID Request to gain permission
Set of permissions to control someone else’s object

grant User Share an object with another user
Device UUID
Set of permissions

The framework extends IoT-OAS by providing a set of messages
that users can exploit to interact with IoT-OAS in order to manage
and request access grants to smart objects. All API calls are autho-
rized by IoT-OAS with OAuth, using the access tokens received upon
login. The main methods in the framework on IoT-OAS are detailed
in Table 7.11.

In order to give the finest granularity in expressing the access privi-
leges granted, a permission is defined by the tuple ⟨res, act, exp⟩, where
res is the URI of the resource, act is the REST method to act on the
resource, and exp is the expiration time of the grant. The framework
takes into account the following three operational cases:

• owner-to-owner authorization;
• reactive owner-to-any authorization: u2 asks permission to u1 to

access an object owned by u1;
• proactive owner-to-any authorization: u1 grants permission to u2 to

access an object he owns.

The use of the API to interact with IoT-OAS allows for definition of a
simple protocol to implement the three operational cases easily.

Owner-to-owner Authorization
The owner of an object (e.g., a someone buying an appliance for the
home or a system administrator for a company), denoted as u1, needs
to authorize himself to gain control of the object. We assume that u1
has already logged on to IoT-OAS. The login procedure results in the
issuing of an access token that u1 will include in all requests to be
identified. The message flow for this case is shown in Figure 7.17a.

7.5 Effective Authorization for the Web of Things 355

1

1

2

3

4

4

5

6

1

2

3

3

2
1

3

2

1 Discover

Request Access

Forward Request to Owner

Grant Permissions

Deliver/Retrieve Grant

Interact with SO through IoT-OAS

Grant Permissions

Deliver Grant

Interact with SO through IoT-OAS

(a)

(b)

(c)

6

52
3

4

1u2u1

u1 u2

uuid

Read uuid

uuid

uuid

IoT-OAS

IoT-OAS

IoT-OAS

Register uuid

Deliver “All-Access” Grant

Interact with SO through loT-OAS

4

u1

2

3

Figure 7.17 Specification of message flows for authorization use cases: (a) access
to resources for smart object owner; (b) reactive sharing of smart objects;
(c) proactive sharing of smart objects.

356 7 The IoT in Practice

Use u1 can read the UUID of the smart object in some way, such
as by scanning a QR code. u1 sends a register(IUUID) request to
IoT-OAS. Upon verifying the message, IoT-OAS binds the device
(and, subsequently, any resource it hosts) to its owner and, at the same
time, invalidates any further registration request for the same UUID.
In addition, IoT-OAS adds “all-access” permissions to u1’s access
token. u1 is now authorized to perform any operation on the smart
object. All requests targeting the smart object must include the access
token, which will be used to validate the request to IoT-OAS’s verify()
method.

Reactive Owner-to-any Authorization
Suppose a user u2 discovers that a smart object owned by u1 is in his
proximity and wishes to use it. u2 must be granted a set of permissions
to access the smart object’s resources. We assume that u1 and u2
have already logged on to IoT-OAS. The message flow for this case
is shown in Figure 7.17b. Let P be the set of permissions that u2
requires to access the smart object. To receive the grant, u2 sends a
request(UUID,P) message to IoT-OAS, which forwards the message
to the owner of the smart object, u1. u1 receives the message and
grants a set of permissions Pg , which may differ from P. u1 sends
a grant(u2,UUID,Pg) message to IoT-OAS, which adds the set of
permission to u2’s access token and notifies u2 of the result of the
operation that he initiated. By including his token in all requests,
verified by IoT-OAS, u2 will be able to access the smart object’s
resources.

Proactive Owner-to-any Authorization
Suppose u1 wants to share the smart object with u2, without u2
explicitly soliciting permission. We assume that u1 and u2 have
already logged on to IoT-OAS. The message flow for this case is
shown in Figure 7.17c and is a simple subset of the operations that
occur with the reactive case. u1 sends a grant(u2,UUID,P) message
to IoT-OAS, which adds the set of permissions to u2’s access token.
At this point, depending on the specific application implementation
and/or user settings, there are two ways u2 can receive the grant:

• using a suitable push notification service, IoT-OAS notifies u2;
• as in the reactive case, after sending a request(UUID) message, u2

will be notified immediately.

7.5 Effective Authorization for the Web of Things 357

7.5.2 Implementation and Validation

Following the definition of the authorization framework, a complete
implementation of the proposed architecture has been realized to
validate the approach with real smart objects and personal devices.
Communication occurs using CoAP/CoAPs, based on the Cal-
ifornium library [94] and its DTLS 1.2 module Scandium.26 An
Android application as implemented to support the user operations
defined by the authorization flow. At startup, the user can authenticate
through Facebook or Google+, as shown in Figure 7.18a. After the
user has logged in, they can view the list of owned and shared devices
and the associated permissions, as shown in Figure 7.18b. By clicking
on the floating “add” button, the user can register a device they own
and that they want to manage, by scanning the QR code associated
with it. Figure 7.18c shows the device’s management view, which
allows the user to interact with available resources and manage usage
permissions with other identified consumers.

The application has been integrated with and tested in our com-
pany’s IoT laboratory, enabling us to consider different scenarios
with multiple active users. Through the application, office employees
can, at the same time, interact with available sensors owned by the

(a) (b) (c)

Figure 7.18 Main sections of the Android application: (a) platform authentication
with Facebook and Google+; (b) list of owned and shared devices; (c) detail view
of a specific device with related permissions.

26 https://github.com/eclipse/californium.scandium.

358 7 The IoT in Practice

company system administrator (e.g., temperature, light, and humidity)
and personal devices on their desk, represented by Philips Hue27 light
bulbs. The meeting room was identified as a common and shared area
where, according to appointment schedules, users can dynamically
receive access grants from the Sys-admin in order to interact with
the room’s equipment – items such as smart plugs and wireless
lighting – during the meetings.

As the IoT and its applications are expected to progressively become
an integral part of our lives, security issues must be addressed in
order to cope with the concerns that might prevent the spread of IoT
products. In general, people will interact with smart objects that they
own and with others that they do not own but that can be shared with
them. Authorization mechanisms must therefore be introduced in
order to take into account the possibility of users wanting to interact
with objects that they do not own. In this section, we have presented
a standards-based authorization framework for WoT applications,
to effectively enforce fine-grained policies to access and share IoT
resources. The proposed framework allows for a simple and seamless
management of access permissions to smart objects. Operation
flows, relying on the IoT-OAS architecture, have been defined for
owner-to-owner and owner-to-any authorization grants. Moreover, a
complete implementation of the authorization framework has been
realized in order to validate compliance with functional requirements
and ease of use.

27 http://www.developers.meethue.com/.

359

References

1 Leiner, B.M., Cerf, V.G., Clark, D.D., Kahn, R.E., Kleinrock, L.,
Lynch, D.C., Postel, J., Roberts, L.G., and Wolff, S. (2009) A
brief history of the internet. SIGCOMM Comput. Commun.
Rev., 39 (5), 22–31. URL http://doi.acm.org/10.1145/
1629607.1629613.

2 Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L.,
Leach, P., and Berners-Lee, T. (1999) Hypertext Transfer Pro-
tocol – HTTP/1.1, RFC 2616. URL http://www.ietf.org/
rfc/rfc2616.txt, obsoleted by RFCs 7230, 7231, 7232, 7233,
7234, 7235, updated by RFCs 2817, 5785, 6266, 6585.

3 Fielding, R. and Reschke, J. (2014), Hypertext Transfer Proto-
col (HTTP/1.1): Message Syntax and Routing, RFC 7230. URL
http://www.ietf.org/rfc/rfc7230.txt.

4 Belshe, M., Peon, R., and Thomson, M. (2015), Hypertext Transfer
Protocol Version 2 (HTTP/2), RFC 7540. URL http://www
.ietf.org/rfc/rfc7540.txt.

5 Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M., and Schooler, E. (2002),
SIP: Session Initiation Protocol, RFC 3261. URL http://www
.ietf.org/rfc/rfc3261.txt, updated by RFCs 3265, 3853,
4320, 4916, 5393, 5621, 5626, 5630, 5922, 5954, 6026, 6141, 6665,
6878, 7462, 7463.

6 Stewart, R. (2007), Stream Control Transmission Protocol, RFC
4960. URL http://www.ietf.org/rfc/rfc4960.txt,
updated by RFCs 6096, 6335, 7053.

7 Shelby, Z., Hartke, K., and Bormann, C. (2014), The Constrained
Application Protocol (CoAP), RFC 7252. URL http://www
.ietf.org/rfc/rfc7252.txt, updated by RFC 7959.

Internet of Things: Architectures, Protocols and Standards, First Edition.
Simone Cirani, Gianluigi Ferrari, Marco Picone, and Luca Veltri.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

360 References

8 Bormann, C., Lemay, S., Tschofenig, H., Hartke, K., Silverajan,
B., and Raymor, B. (2017) CoAP (Constrained Application
Protocol) over TCP, TLS, and WebSockets, Internet draft
draft-ietf-core-coap-tcp-tls-09, Internet Engineering Task Force.
URL https://datatracker.ietf.org/doc/html/
draft-ietf-core-coap-tcp-tls-09, work in progress.

9 Hartke, K. (2015), Observing Resources in the Constrained Appli-
cation Protocol (CoAP), RFC 7641, doi:10.17487/RFC7641. URL
https://rfc-editor.org/rfc/rfc7641.txt.

10 Bormann, C. and Shelby, Z. (2016), Block-Wise Transfers in
the Constrained Application Protocol (CoAP), RFC 7959. URL
http://www.ietf.org/rfc/rfc7959.txt.

11 Rahman, A. and Dijk, E. (2014), Group Communication for the
Constrained Application Protocol (CoAP), RFC 7390 (Experimen-
tal). URL http://www.ietf.org/rfc/rfc7390.txt.

12 Nottingham, M. (2010), Web Linking, RFC 5988. URL http://
www.ietf.org/rfc/rfc5988.txt.

13 Shelby, Z., Constrained RESTful Environments (CoRE) Link
Format, RFC 6690.

14 Shelby, Z., Koster, M., Bormann, C., van der Stok, P., and
Amsuess, C. (2018) Core resource directory, Internet-Draft draft-
ietf-core-resource-directory-13, IETF Secretariat. URL http://
www.ietf.org/internet-drafts/draft-ietf-core-
resource-directory-13.txt.

15 Castellani, A., Loreto, S., Rahman, A., Fossati, T., and Dijk, E.
(2017), Guidelines for Mapping Implementations: HTTP to
the Constrained Application Protocol (CoAP), RFC 8075. URL
http://www.ietf.org/rfc/rfc8075.txt.

16 Schulzrinne, H., Casner, S., Frederick, R., and Jacobson, V. (2003),
RTP: A Transport Protocol for Real-Time Applications, RFC 3550.
URL http://www.ietf.org/rfc/rfc3550.txt, updated
by RFCs 5506, 5761, 6051, 6222, 7022, 7160, 7164, 8083, 8108.

17 Handley, M., Jacobson, V., and Perkins, C. (2006), SDP: Ses-
sion Description Protocol, RFC 4566 (proposed standard). URL
http://www.ietf.org/rfc/rfc4566.txt.

18 Roach, A.B. (2002), Session Initiation Protocol (SIP)-Specific
Event Notification, RFC 3265. URL http://www.ietf.org/
rfc/rfc3265.txt, obsoleted by RFC 6665, updated by RFCs
5367, 5727, 6446.

References 361

19 IETF IPv6 over Low Power WPAN. URL http://tools.ietf
.org/wg/6lowpan/.

20 IETF Routing Over Low Power and Lossy Networks Working
Group. URL http://tools.ietf.org/wg/roll/.

21 IETF Constrained RESTful Environments Working Group. URL
http://tools.ietf.org/wg/core/.

22 mjSIP Project. URL http://mjsip.org.
23 Cirani, S., Picone, M., and Veltri, L. (2014) mjCoAP: An

open-source lightweight Java CoAP library for Internet of Things
applications, in Workshop on Interoperability and Open-Source
Solutions for the Internet of Things, in conjunction with SoftCOM
2014: The 22nd International Conference on Software, Telecommu-
nications and Computer Networks, Split, Croatia.

24 mjCoAP, URL http://netsec.unipr.it/project/
mjcoap.

25 Cirani, S., Picone, M., and Veltri, L. (2013) Cosip: A constrained
session initiation protocol for the internet of things, in Advances
in Service-Oriented and Cloud Computing: Workshops of ESOCC
2013, Málaga, Spain, September 11–13, 2013, Revised Selected
Papers, Springer, Berlin, Heidelberg, pp. 13–24.

26 Cirani, S., Picone, M., and Veltri, L. (2013) A session initiation
protocol for the Internet of Things. Scalable Computing: Practice
and Experience, 14 (4), 249–263.

27 CoSIP Project. URL http://netsec.unipr.it/project/
cosip.

28 Berners-Lee, T., Fielding, R., and Masinter, L. (2005), Uniform
Resource Identifier (URI): Generic Syntax, RFC 3986. URL
http://www.ietf.org/rfc/rfc3986.txt, updated by
RFCs 6874, 7320.

29 Fielding, R.T. (2000) Architectural Styles and the Design of
Network-based Software Architectures, Phd thesis, University
of California. URL http://www.ics.uci.edu/∼fielding/
pubs/dissertation/top.htm.

30 Mitra, N. and Lafon, Y. (2007), SOAP Version 1.2 Part 0: Primer
(2nd edn), World Wide Web Consortium, Recommendation
REC-soap12-part0-20070427.

31 Hadley, M. (2009), Web Application Description Language, World
Wide Web Consortium.

362 References

32 Kovatsch, M., Duquennoy, S., and Dunkels, A. (2011) A
low-power CoAP for Contiki, in IEEE 8th International Con-
ference on Mobile Adhoc and Sensor Systems (MASS), 2011.

33 mjSIP project (2013), mjUA: mjSIP User Agent (UA). URL
http://www.mjcoap.org/ua.

34 Veltri, L. (2014), mjCoAP extension for session initiation. URL
http://www.mjcoap.org/projects/session.

35 Cirani, S., Picone, M., and Veltri, L. (2014) A session initiation
protocol for the Internet of Things. Scalable Computing: Practice
and Experience, 14 (4), 249–263.

36 Hartke, K. (2015) Observing resources in the constrained applica-
tion protocol (CoAP), RFC 7641, Internet Engineering Task Force.

37 Gallart, V., Felici-Castell, S., Delamo, M., Foster, A., and Perez,
J. (2011) Evaluation of a real, low cost, urban WSN deployment
for accurate environmental monitoring, in IEEE 8th International
Conference on Mobile Adhoc and Sensor Systems (MASS).

38 Ruichao, L., Jing, H., and Lianfeng, S. (2009) Design and imple-
mentation of a video surveillance system based on 3G network,
in International Conference on Wireless Communications Signal
Processing (WCSP 2009).

39 Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P.,
Pister, K., Struik, R., Vasseur, J., and Alexander, R. (2012), RPL:
IPv6 Routing Protocol for Low-Power and Lossy Networks, RFC
6550. URL http://www.ietf.org/rfc/rfc6550.txt.

40 Dunkels, A., Gronvall, B., and Voigt, T. (2004) Contiki – a
lightweight and flexible operating system for tiny networked
sensors, in 29th Annual IEEE International Conference on Local
Computer Networks, Tampa, FL, USA.

41 IEEE (2003) Local and Metropolitan Area Networks – Specific
requirements– Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications Amendment
4: Further Higher Data Rate Extension in the 2.4 GHz Band,
802.11g-2003, IEEE.

42 IEEE (2009) Local and Metropolitan Area Networks – Specific
Requirements– Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications Amendment 5:
Enhancements for Higher Throughput, 802.11n-2009, IEEE.

43 IEEE (2011) Local and Metropolitan Area Networks – Specific
requirements – Part 11: Wireless LAN Medium Access Control

References 363

(MAC) and Physical Layer (PHY) Specifications Amendment 10:
Mesh Networking, 802.11s-2011, IEEE.

44 Gummeson, J., Ganesan, D., Corner, M., and Shenoy, P. (2010) An
adaptive link layer for heterogeneous multi-radio mobile sensor
networks. IEEE J. Select. Areas Commun., 28 (7), 1094–1104.

45 Sengul, C., Bakht, M., Harris, A.F., Abdelzaher, T., and Kravets,
R. (2008) Improving energy conservation using bulk transmission
over high-power radios in sensor networks, in Proceedings of the
28th International Conference on Distributed Computing Systems
(ICDCS 08), Beijing, China.

46 Wan, C.Y., Eisenman, S.B., Campbell, A.T., and Crowcroft, J.
(2005) Siphon: Overload traffic management using multi-radio
virtual sinks in sensor networks, in Proceedings of the 3rd Inter-
national Conference on Embedded Networked Sensor Systems
(SenSys 05), San Diego, CA, USA.

47 Stathopoulos, T., Lukac, M., Mclntire, D., Heidemann, J., Estrin,
D., and Kaiser, W. (2007) End-to-end routing for dual-radio sen-
sor networks, in 26th IEEE International Conference on Computer
Communications (INFOCOM 2007), Anchorage, AK, USA.

48 Jurdak, R., Klues, K., Kusy, B., Richter, C., Langendoen, K., and
Brunig, M. (2011) Opal: A multiradio platform for high through-
put wireless sensor networks. IEEE Embedded Systems Letters,
3 (4), 121–124.

49 Dunkels, A. (2011) The ContikiMAC Radio Duty Cycling Proto-
col, Tech. Rep. T2011:13, Swedish Institute of Computer Science.
URL http://dunkels.com/adam/dunkels11contikimac
.pdf.

50 Mockapetris, P. (1987), Domain names – concepts and facilities,
RFC 1034. URL http://www.ietf.org/rfc/rfc1034.txt,
updated by RFCs 1101, 1183, 1348, 1876, 1982, 2065, 2181, 2308,
2535, 4033, 4034, 4035, 4343, 4035, 4592, 5936, 8020.

51 Mockapetris, P. (1987), Domain names - implementation and
specification, RFC 1035. URL http://www.ietf.org/rfc/
rfc1035.txt, updated by RFCs 1101, 1183, 1348, 1876, 1982,
1995, 1996, 2065, 2136, 2181, 2137, 2308, 2535, 2673, 2845, 3425,
3658, 4033, 4034, 4035, 4343, 5936, 5966, 6604, 7766.

52 Freed, N. and Borenstein, N. (1996), Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message Bodies,
RFC 2045. URL http://www.ietf.org/rfc/rfc2045.txt,
updated by RFCs 2184, 2231, 5335, 6532.

364 References

53 Nottingham, M. and Sayre, R. (2005), The Atom Syndication For-
mat, RFC 4287. URL http://www.ietf.org/rfc/rfc4287
.txt, updated by RFC 5988.

54 Crocker, D. and Overell, P. (2008), Augmented BNF for Syn-
tax Specifications: ABNF, RFC 5234. URL http://www.ietf
.org/rfc/rfc5234.txt, updated by RFC 7405.

55 Shelby, Z., Vial, M., Koster, M., Groves, C., Zhu, J., and Silverajan,
B. (2018) Reusable Interface Definitions for Constrained REST-
ful Environments, Internet-Draft draft-ietf-core-interfaces-11,
IETF Secretariat. URL http://www.ietf.org/internet-
drafts/draft-ietf-core-interfaces-11.txt.

56 Jennings, C., Shelby, Z., Arkko, J., Keranen, A., and Bormann,
C. (2018) Media Types for Sensor Measurement Lists (SenML),
Internet-Draft draft-ietf-core-senml-14, IETF Secretariat. URL
http://www.ietf.org/internet-drafts/draft-ietf-
core-senml-14.txt.

57 UPnP forums. URL http://www.upnp.org/.
58 Guttman, E., Perkins, C., and Veizades, J. (1999) Service Loca-

tion Protocol, Version 2, RFC 2608, IETF. URL http://tools
.ietf.org/html/rfc2608.

59 Guttman, E. (2002) Vendor Extensions for Service Location Pro-
tocol, Version 2, RFC 3224, IETF. URL http://tools.ietf
.org/html/rfc3224.

60 Zeroconf website. URL http://www.zeroconf.org/.
61 Cheshire, S. and Krochmal, M. (2013) Multicast DNS, RFC 6762,

IETF. URL http://tools.ietf.org/html/rfc6762.
62 Cheshire, S. and Krochmal, M. (2013) DNS-Based Service Discov-

ery, RFC 6763, IETF. URL http://tools.ietf.org/html/
rfc6763.

63 Piax website. URL http://www.piax.org/en.
64 Kaneko, Y., Harumoto, K., Fukumura, S., Shimojo, S., and

Nishio, S. (2005) A location-based peer-to-peer network
for context-aware services in a ubiquitous environment, in
Applications and the Internet Workshops, 2005. Saint Workshops
2005. The 2005 Symposium on.

65 Busnel, Y., Bertier, M., and Kermarrec, A.M. (2008) Solist or how
to look for a needle in a haystack? A lightweight multi-overlay
structure for wireless sensor networks, in IEEE WiMob ’08, Avi-
gnon, France.

References 365

66 Gutierrez, G., Mejias, B., Van Roy, P., Velasco, D., and Torres, J.
(2008) WSN and P2P: A self-managing marriage, in 2nd IEEE
International Conference on Self-Adaptive and Self-Organizing
Systems Workshops (SASOW 2008).

67 Leguay, J., Lopez-Ramos, M., Jean-Marie, K., and Conan,
V. (2008) An efficient service oriented architecture for
heterogeneous and dynamic wireless sensor networks, in
33rd IEEE Conference on Local Computer Networks, 2008.
(LCN 2008).

68 Kovacevic, A., Ansari, J., and Mahonen, P. (2010) NanoSD: A
flexible service discovery protocol for dynamic and heterogeneous
wireless sensor networks, in Mobile Ad-hoc and Sensor Networks
(MSN), 2010 Sixth International Conference on.

69 Mayer, S. and Guinard, D. (2011) An extensible discovery ser-
vice for smart things, in Proceedings of the Second International
Workshop on Web of Things (WOT ’11).

70 Butt, T.A., Phillips, I., Guan, L., and Oikonomou, G. (2012)
TRENDY: an adaptive and context-aware service discovery pro-
tocol for 6LoWPANs, in Proceedings of the Third International
Workshop on the Web of Things (WOT ’12), ACM, New York, NY,
USA.

71 Jara, A., Lopez, P., Fernandez, D., Castillo, J., Zamora, M., and
Skarmeta, A. (2013) Mobile Digcovery: A global service discovery
for the internet of things, in 27th International Conference on
Advanced Information Networking and Applications Workshops
(WAINA), 2013.

72 Paganelli, F. and Parlanti, D. (2012) A DHT-based discovery ser-
vice for the Internet of Things. J. Comp. Netw. Communic., 2012.
URL https://www.hindawi.com/journals/jcnc/2012/
107041/cta/.

73 Schoenemann, N., Fischbach, K., and Schoder, D. (2009) P2P
architecture for ubiquitous supply chain systems, in ECIS
(eds S. Newell, E.A. Whitley, N. Pouloudi, J. Wareham, and L.
Mathiassen).

74 Shrestha, S., Kim, D.S., Lee, S., and Park, J.S. (2010) A
peer-to-peer RFID resolution framework for supply chain net-
work, in Future Networks, 2010. ICFN ’10. Second International
Conference on.

75 Manzanares-Lopez, P., Muñoz-Gea, J.P., Malgosa-Sanahuja, J., and
Sanchez-Aarnoutse, J.C. (2011) An efficient distributed discovery

366 References

service for EPCglobal network in nested package scenarios. J.
Netw. Comput. Appl., 34 (3), 925–937.

76 Rahman, A. and Dijk, E. (2014) Group Communication for the
Constrained Application Protocol (CoAP), RFC 7390, RFC Editor.
URL http://www.rfc-editor.org/rfc/rfc7390.txt.

77 Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., and
Balakrishnan, H. (2001) Chord: A scalable peer-to-peer lookup
service for internet applications. SIGCOMM Comput. Commun.
Rev., 31 (4), 149–160. URL http://doi.acm.org/10.1145/
964723.383071.

78 Maymounkov, P. and Mazières, D. (2002) Kademlia: A
peer-to-peer information system based on the XOR metric, in
Proceedings of the 1st International Workshop on Peer-to-Peer
Systems, Springer-Verlag, London. URL http://dl.acm.org/
citation.cfm?id=646334.687801.

79 Yulin, N., Huayou, S., Weiping, L., and Zhong, C. (2010)
PDUS: P2P-based distributed UDDI service discovery
approach, in International Conference on Service Sciences
(ICSS), 2010.

80 Kaffille, S., Loesing, K., and Wirtz, G. (2005) Distributed ser-
vice discovery with guarantees in peer-to-peer networks using
distributed hashtables, in PDPTA, CSREA Press.

81 Cheshire, S., Aboba, B., and Guttman, E. (2005), Dynamic Config-
uration of IPv4 Link-Local Addresses, RFC 3927. URL http://
www.ietf.org/rfc/rfc3927.txt.

82 Cheshire, S. and Krochmal, M. (2013), Multicast DNS, RFC 6762.
URL http://www.ietf.org/rfc/rfc6762.txt.

83 Cheshire, S. and Krochmal, M. (2013), DNS-Based Service
Discovery, RFC 6763. URL http://www.ietf.org/rfc/
rfc6763.txt.

84 Cirani, S. and Veltri, L. (2008) Implementation of a framework
for a DHT-based distributed location service, in 16th Interna-
tional Conference on Software, Telecommunications and Computer
Networks, 2008. (SoftCOM 2008).

85 Picone, M., Amoretti, M., and Zanichelli, F. (2010) GeoKad: A
P2P distributed localization protocol, in Pervasive Computing
and Communications Workshops (PERCOM Workshops), 2010 8th
IEEE International Conference on.

References 367

86 Picone, M., Amoretti, M., and Zanichelli, F. (2011) Proactive
neighbor localization based on distributed geographic table. Int. J
Pervasive Comput. Commun., 7, 240–263.

87 Bryan, D., Lowekamp, B., and Jennings, C. (2007) dSIP: A P2P
Approach to SIP Registration and Resource Location, Internet
draft draft-bryan-p2psip-dsip-00, IETF. URL http://tools
.ietf.org/id/draft-bryan-p2psip-dsip-00.txt.

88 Jennings, C., Lowekamp, B., Rescorla, E., Baset, S., and
Schulzrinne, H. (2014) REsource LOcation And Discovery
(RELOAD) Base Protocol, RFC 6940, RFC Editor.

89 Gonizzi, P., Ferrari, G., Gay, V., and Leguay, J. (2013) Data dis-
semination scheme for distributed storage for IoT observation
systems at large scale. Inf. Fusion, 22, 16–25.

90 Droms, R. (1997) Dynamic Host Configuration Protocol, RFC
2131. URL http://www.ietf.org/rfc/rfc2131.txt,
updated by RFCs 3396, 4361, 5494, 6842.

91 Picone, M., Amoretti, M., and Zanichelli, F. (2011) Evaluating the
robustness of the DGT approach for smartphone-based vehic-
ular networks, in Proceedings of IEEE 36th Conference on Local
Computer Networks (LCN 2011), IEEE, Bonn, Germany.

92 Picone, M., Amoretti, M., and Zanichelli, F. (2012) A decentral-
ized smartphone based traffic information system, in Proceedings
of the 2012 IEEE Intelligent Vehicles Symposium, IEEE, Alcalá de
Henares, Spain.

93 Cirani, S. and Veltri, L. (2007), A Kademlia-based DHT for
Resource Lookup in P2PSIP, Obsolete Internet draft.

94 Kovatsch, M., Lanter, M., and Shelby, Z. (2014) Californium:
scalable cloud services for the internet of things with CoAP, in
Proceedings of the 4th International Conference on the Internet of
Things (IoT 2014), Cambridge, MA, USA.

95 Weisstein, E.W., Least squares fitting – logarithmic.
URL http://mathworld.wolfram.com/
LeastSquaresFittingLogarithmic.html.

96 Hui, J. and Kelsey, R. (2016) Multicast protocol for low-power
and lossy networks (mpl), Internet Requests for Comments RFC
7731, RFC Editor.

97 Levis, P., Patel, N., Culler, D., and Shenker, S. (2004) Trickle: A
self-regulating algorithm for code propagation and maintenance
in wireless sensor networks, in Proceedings of the 1st Conference
on Symposium on Networked Systems Design and Implementation

368 References

(NSDI04), vol. 1, USENIX Association, Berkeley, CA, USA, vol. 1.
URL http://dl.acm.org/citation.cfm?id=1251175
.1251177.

98 Jung, M. and Kastner, W. (2013) Efficient group communication
based on web services for reliable control in wireless automa-
tion, in 39th Annual Conference of the IEEE Industrial Electronics
Society, IECON 2013.

99 Oikonomou, G. and Phillips, I. (2012) Stateless multicast for-
warding with RPL in 6LoWPAN sensor networks, in IEEE
International Conference on Pervasive Computing and Com-
munications Workshops (PERCOM Workshops), 2012.

100 Bloom, B.H. (1970) Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13 (7), 422–426. URL
http://doi.acm.org/10.1145/362686.362692.

101 Bender, M.A., Farach-Colton, M., Johnson, R., Kuszmaul, B.C.,
Medjedovic, D., Montes, P., Shetty, P., Spillane, R.P., and Zadok,
E. (2011) Don’t thrash: How to cache your hash on flash, in Pro-
ceedings of the 3rd USENIX Conference on Hot Topics in Storage
and File Systems (HotStorage ’11), USENIX Association, Berke-
ley, CA, USA. URL http://dl.acm.org/citation.cfm?
id=2002218.2002219.

102 Heer, T., Garcia-Morchon, O., Hummen, R., Keoh, S.L., Kumar,
S.S., and Wehrle, K. (2011) Security challenges in the IP-based
Internet of Things. Wirel. Pers. Commun., 61 (3), 527–542.
URL http://dx.doi.org/10.1007/s11277-011-0385-
5.

103 Garcia-Morchon, O., Keoh, S., Kumar, S., Hummen, R., and
Struik, R. (2012) Security Considerations in the IP-based Inter-
net of Things, Internet draft draft-garcia-core-security-04, IETF.
URL http://tools.ietf.org/id/draft-garcia-core-
security-04.

104 Bormann, C. (2012) Guidance for Light-Weight Imple-
mentations of the Internet Protocol Suite, Internet draft
draft-ietf-lwig-guidance-02, IETF. URL http://tools.ietf
.org/html/draft-ietf-lwig-guidance.

105 IETF Light-Weight Implementation Guidance. URL http://
tools.ietf.org/wg/lwig/.

106 Kent, S. and Atkinson, R. (1998), Security Architecture for the
Internet Protocol, RFC 2401. URL http://www.ietf.org/

References 369

rfc/rfc2401.txt, obsoleted by RFC 4301, updated by RFC
3168.

107 Raza, S., Duquennoy, S., Chung, T., Yazar, D., Voigt, T., and
Roedig, U. (2011) Securing communication in 6LoWPAN with
compressed IPsec, in Proceedings of the International Confer-
ence on Distributed Computing in Sensor Systems (IEEE DCOSS
2011). URL http://www.simonduquennoy.net/papers/
raza11securing.pdf.

108 Moskowitz, R., Heer, T., Jokela, P., and Henderson, T. (2015) Host
Identity Protocol Version 2 (HIPv2), RFC 7401, RFC Editor. URL
http://www.rfc-editor.org/rfc/rfc7401.txt.

109 Jokela, P., Moskowitz, R., and Melen, J. (2015) Using the Encap-
sulating Security Payload (ESP) Transport Format with the Host
Identity Protocol (HIP), Tech. Rep., IETF.

110 Dierks, T. and Rescorla, E. (2008), The Transport Layer Security
(TLS) Protocol Version 1.2, RFC 5246. URL http://www.ietf
.org/rfc/rfc5246.txt, updated by RFCs 5746, 5878, 6176,
7465, 7507, 7568, 7627, 7685, 7905, 7919.

111 Rescorla, E. and Modadugu, N. (2012), Datagram Transport Layer
Security Version 1.2, RFC 6347. URL http://www.ietf.org/
rfc/rfc6347.txt, updated by RFCs 7507, 7905.

112 Raza, S., Trabalza, D., and Voigt, T. (2012) 6LoWPAN Com-
pressed DTLS for CoAP, in Proceedings of the 8th IEEE Interna-
tional Conference on Distributed Computing in Sensor Systems
(IEEE DCOSS 2011), Hangzhou, China.

113 Brachmann, M., Keoh, S., Morchon, O., and Kumar, S. (2012)
End-to-end transport security in the IP-Based Internet of Things,
in 21st International Conference on Computer Communications
and Networks (ICCCN), 2012.

114 Brachmann, M., Morchon, O., Keoh, S., and Kumar, S. (2012)
Security considerations around end-to-end security in the
IP-based Internet of Things, in Workshop on Smart Object Secu-
rity, in conjunction with IETF83.

115 Ramsdell, B. and Turner, S. (2010), Secure/Multipurpose Internet
Mail Extensions (S/MIME) Version 3.2 Message Specification,
RFC 5751. URL http://www.ietf.org/rfc/rfc5751.txt.

116 Baugher, M., McGrew, D., Naslund, M., Carrara, E., and
Norrman, K. (2004), The Secure Real-time Transport Proto-
col (SRTP), RFC 3711. URL http://www.ietf.org/rfc/
rfc3711.txt, updated by RFCs 5506, 6904.

370 References

117 Daemen, J. and Rijmen, V. (2002) The Design of Rijndael,
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

118 Eisenbarth, T., Kumar, S., Paar, C., Poschmann, A., and Uhsadel,
L. (2007) A survey of lightweight-cryptography implementations.
IEEE Des. Test, 24 (6), 522–533.

119 Rinne, S., Eisenbarth, T., and Paar, C. (2007) Performance analysis
of contemporary light-weight block ciphers on 8-bit microcon-
trollers, in ECRYPT Workshop SPEED – Software Performance
Enhancement for Encryption and Decryption.

120 Wheeler, D. and Needham, R. (1995) TEA, a tiny encryption
algorithm, in Fast Software Encryption, Lecture Notes in Computer
Science, vol. 1008 (ed. B. Preneel), Springer, pp. 363–366.

121 Needham, R.M. and Wheeler, D.J. (1997) TEA Extensions, Tech.
Rep., University of Cambridge.

122 Standaert, F.X., Piret, G., Gershenfeld, N., and Quisquater, J.J.
(2006) SEA: A scalable encryption algorithm for small embedded
applications, in Smart Card Research and Advanced Appli-
cations, Lecture Notes in Computer Science, vol. 3928 (eds J.
Domingo-Ferrer, J. Posegga, and D. Schreckling), Springer, pp.
222–236.

123 Bogdanov, A., Knudsen, L., Leander, G., Paar, C., Poschmann,
A., Robshaw, M., Seurin, Y., and Vikkelsoe, C. (2007) PRESENT:
An ultra-lightweight block cipher, in Cryptographic Hardware
and Embedded Systems (CHES 2007), Lecture Notes in Computer
Science, vol. 4727 (eds P. Paillier and I. Verbauwhede), Springer,
pp. 450–466.

124 ISO/IEC (2012) Information Technology – Security Tech-
niques – Lightweight Cryptography – Part 2: Block Ciphers,
ISO/IEC standard 29192-2:2012, ISO, Geneva, Switzerland.

125 Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C.,
Chang, D., Lee, J., Jeong, K., Kim, H., Kim, J., and Chee, S. (2006)
HIGHT: A new block cipher suitable for low-resource device, in
Cryptographic Hardware and Embedded Systems – CHES 2006,
8th International Workshop, Lecture Notes in Computer Science,
vol. 4249, Springer, Lecture Notes in Computer Science, vol. 4249.
URL http://www.iacr.org/cryptodb/archive/2006/
CHES/04/04.pdf.

126 Atmel AVR 8-bit microcontrollers. URL http://www.atmel
.it/products/microcontrollers/avr/default.aspx.

References 371

127 Feldhofer, M., Dominikus, S., and Wolkerstorfer, J. (2004) Strong
authentication for RFID systems using the AES algorithm, in
Cryptographic Hardware and Embedded Systems – CHES 2004,
Lecture Notes in Computer Science, vol. 3156 (eds M. Joye and J.J.
Quisquater), Springer, pp. 357–370.

128 Feldhofer, M., Wolkerstorfer, J., and Rijmen, V. (2005) AES imple-
mentation on a grain of sand. IEEE Proc. Info. Security,, 152 (1),
13–20.

129 Kaps, J.P. (2008) Chai-tea, cryptographic hardware implementa-
tions of xTEA, in Progress in Cryptology (INDOCRYPT 2008),
Lecture Notes in Computer Science, vol. 5365 (eds D. Chowdhury,
V. Rijmen, and A. Das), Springer, pp. 363–375.

130 Macé, F., St, F.X., and Quisquater, J.J. (2007), ASIC implementa-
tions of the block cipher SEA for constrained applications. URL
http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.88.926.

131 Plos, T., Dobraunig, C., Hofinger, M., Oprisnik, A., Wiesmeier, C.,
and Wiesmeier, J. (2012) Compact hardware implementations of
the block ciphers mCrypton, NOEKEON, and SEA, in Progress
in Cryptology (INDOCRYPT 2012), Lecture Notes in Computer
Science, vol. 7668 (eds S. Galbraith and M. Nandi), Springer,
pp. 358–377.

132 Rivest, R., Shamir, A., and Adleman, L. (1978) A method for
obtaining digital signatures and public-key cryptosystems. Com-
mun. ACM, 21, 120–126.

133 Koblitz, N. (1987) Elliptic curve cryptosystems. Math. Comput.,
48 (177), 203–209.

134 American National Standards Institute. URL http://www.ansi
.org.

135 Institute of Electrical and Electronics Engineers. URL http://
www.ieee.org.

136 International Organization for Standardization. URL http://
www.ieee.org.

137 Standards for Efficient Cryptography Group. URL http://secs
.org.

138 National Institute of Standards and Technology. URL http://
www.nist.gov.

139 Sethi, M., Arkko, A., Keranen, A., and Rissanen, H. (2012)
Practical Considerations and Implementation Experi-
ences in Securing Smart Object Networks, Internet draft

372 References

draft-aks-crypto-sensors-02, IETF. URL http://tools.ietf
.org/html/draft-aks-crypto-sensors-02.

140 Rivest, R. (1992) RFC 1321: The MD5 message-digest algorithm.
The Internet Engineering Task Force (IETF).

141 Eastlake, D.E. and Jones, P.E., US Secure Hash Algorithm 1
(SHA1), http://www.ietf.org/rfc/rfc3174.txt.

142 Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J., and Seurin, Y. (2008) Hash functions and RFID tags: Mind
the gap, in Proceedings of the 10th International Workshop on
Cryptographic Hardware and Embedded Systems (CHES ’08),
Springer-Verlag, Berlin, Heidelberg.

143 Guo, J., Peyrin, T., and Poschmann, A. (2011) The photon fam-
ily of lightweight hash functions, in Proceedings of the 31st
Annual Conference on Advances in Cryptology (CRYPTO’11),
Springer-Verlag, Berlin, Heidelberg. URL http://dl.acm
.org/citation.cfm?id=2033036.2033053.

144 Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Bertoni, G.,
Daemen, J., Peeters, M., and Assche, G.V. (2007), Sponge func-
tions. URL https://keccak.team/files/CSF-0.1.pdf.

145 Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varici, K., and
Verbauwhede, I. (2011) Spongent: a lightweight hash function, in
Proceedings of the 13th International Conference on Cryptographic
Hardware and Embedded Systems (CHES’11), Springer-Verlag,
Berlin, Heidelberg. URL http://dl.acm.org/citation
.cfm?id=2044928.2044957.

146 Aumasson, J.P., Henzen, L., Meier, W., and Naya-Plasencia, M.
(2010) Quark: a lightweight hash, in Proceedings of the 12th
International Conference on Cryptographic Hardware and Embed-
ded Systems (CHES’10), Springer-Verlag, Berlin, Heidelberg.
URL http://dl.acm.org/citation.cfm?id=1881511
.1881513.

147 Bertoni, G., Daemen, J., Peeters, M., and Assche, G.V. (2009),
Keccak specifications. URL http://keccak.noekeon.org/
Keccak-specifications.pdf.

148 NIST, Sha3 competition. URL http://csrc.nist.gov/
groups/ST/hash/sha-3.

149 Shamir, A. (2008) SQUASH – A new MAC with provable secu-
rity properties for highly constrained devices such as RFID tags,
in Fast Software Encryption (ed. K. Nyberg), Springer-Verlag,
Berlin, Heidelberg, pp. 144–157.

References 373

150 El Gamal, T. (1985) A public key cryptosystem and a signature
scheme based on discrete logarithms, in Proceedings of CRYPTO
84 on Advances in cryptology, Springer-Verlag New York, Inc.,
New York, NY, USA. URL http://dl.acm.org/citation
.cfm?id=19478.19480.

151 Paillier, P. (1999) Public-key cryptosystems based on com-
posite degree residuosity classes, in Advances in Cryptology
(EUROCRYPT 99), Lecture Notes in Computer Science, vol. 1592
(ed. J. Stern), Springer, pp. 223–238.

152 Diffie, W. and Hellman, M. (2006), New directions in cryptogra-
phy.

153 Harkins, D. and Carrel, D. (1998), The Internet Key Exchange
(IKE), RFC 2409. URL http://www.ietf.org/rfc/
rfc2409.txt, obsoleted by RFC 4306, updated by RFC 4109.

154 Blundo, C., Santis, A.D., Herzberg, A., Kutten, S., Vaccaro, U.,
and Yung, M. (1993) Perfectly-secure key distribution for dynamic
conferences, in Proceedings of the 12th Annual International
Cryptology Conference on Advances in Cryptology (CRYPTO ’92),
Springer-Verlag, London, UK, UK, CRYPTO ’92. URL http://
dl.acm.org/citation.cfm?id=646757.705531.

155 Liu, D. and Ning, P. Establishing pairwise keys in distributed
sensor networks, in Proceedings of the 10th ACM Conference on
Computer and Communications Security (CCS ’03).

156 Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., and Culler, D.E.
(2002) Spins: security protocols for sensor networks. Wirel. Netw.,
8 (5), 521–534.

157 Chan, H., Perrig, A., and Song, D. Random key predistribution
schemes for sensor networks, in Proceedings of the 2003 IEEE
Symposium on Security and Privacy (SP ’03).

158 Wong, C.K., Gouda, M., and Lam, S. (2000) Secure group com-
munications using key graphs. IEEE/ACM Trans. Netw., 8 (1),
16–30.

159 Micciancio, D. and Panjwani, S. (2008) Optimal communica-
tion complexity of generic multicast key distribution. IEEE/ACM
Trans. Netw., 16.

160 Keoh, S., Garcia-Morchon, O., Kumar, S., and Dijk, S. (2012)
DTLS-based Multicast Security for Low-Power and Lossy Net-
works (LLNs), Internet draft draft-keoh-tls-multicast-security-00,
IETF. URL http://tools.ietf.org/id/draft-keoh-
tls-multicast-security-00.

374 References

161 Berkovits, S. (1991) How to broadcast a secret, in Proc. of the Intl.
Conference on Theory and application of cryptographic techniques
(EUROCRYPT), Springer-Verlag, Brighton, UK.

162 Naor, D., Naor, M., and Lotspiech, J. (2001) Revocation and trac-
ing schemes for stateless receivers, in Advances in Cryptology
(CRYPTO), Lecture Notes in Computer Science, vol. 2139 (ed. J.
Kilian), Springer Berlin / Heidelberg, pp. 41–62.

163 Ballardie, A. (1996), Scalable Multicast Key Distribution, RFC
1949 (Experimental). URL http://www.ietf.org/rfc/
rfc1949.txt.

164 Lin, J., Huang, K., Lai, F., and Lee, H. (2009) Secure and efficient
group key management with shared key derivation. Comput.
Standards Interf., 31 (1), 192–208.

165 Lee, P., Lui, J., and Yau, D. (2006) Distributed collaborative key
agreement and authentication protocols for dynamic peer groups.
IEEE/ACM Trans. Netw., 14 (2), 263–276.

166 Kim, Y., Perrig, A., and Tsudik, G. (2004) Tree-based group key
agreement. ACM Trans. Inf. Syst. Secur., 7, 60–96.

167 Briscoe, B. (1999) MARKS: Zero side effect multicast key man-
agement using arbitrarily revealed key sequences, in Networked
Group Communication, Lecture Notes in Computer Science, vol.
1736 (eds L. Rizzo and S. Fdida), Springer Berlin / Heidelberg,
pp. 301–320.

168 Sarikaya, B., Ohba, Y., Moskowitz, R., Cao, Z., and Cragie, R.
(2012) Security Bootstrapping Solution for Resource-Constrained
Devices, Internet draft draft-sarikaya-core-sbootstrapping-05,
IETF. URL http://tools.ietf.org/html/draft-
sarikaya-core-sbootstrapping.

169 Jennings, C. (2012) Transitive Trust Enroll-
ment for Constrained Devices, Internet draft
draft-jennings-core-transitive-trust-enrollment-01, IETF. URL
http://tools.ietf.org/id/draft-jennings-core-
transitive-trust-enrollment-01.

170 Garcia-Morchon, O. and Wehrle, K. (2010) Modular
context-aware access control for medical sensor networks, in
Proceedings of the 15th ACM Symposium on Access Control Mod-
els and Technologies (SACMAT ’10), ACM, New York, NY, USA.
URL http://doi.acm.org/10.1145/1809842.1809864.

171 Hammer-Lahav, E. (2010) The OAuth 1.0 Protocol, RFC 5849,
IETF. URL http://www.ietf.org/rfc/rfc5849.txt,
obsoleted by RFC 6749.

References 375

172 Hardt, D. (2012), The OAuth 2.0 Authorization Framework, RFC
6749. URL http://www.ietf.org/rfc/rfc6749.txt.

173 Hammer-Lahav, E. (2010) The OAuth 1.0 Protocol, RFC 5849,
IETF. URL http://www.ietf.org/rfc/rfc5849.txt,
obsoleted by RFC 6749.

174 Dierks, T. and Rescorla, E. The Transport Layer Security (TLS)
Protocol Version 1.2, RFC 5246, IETF.

175 Hardt, D. The OAuth 2.0 Authorization Framework, RFC 6749,
IETF.

176 IPSO Alliance. URL http://www.ipso-alliance.org/.
177 Connect All IP-based Smart Objects (CALIPSO) – FP7 EU

Project. URL http://www.ict-calipso.eu/.
178 Worldsensing. URL http://www.worldsensing.com/.
179 Cirani, S., Ferrari, G., and Veltri, L. (2013) Enforcing security

mechanisms in the IP-Based Internet of Things: An algorithmic
overview. Algorithms, 6 (2), 197–226. URL http://www.mdpi
.com/1999-4893/6/2/197.

180 Ning, H., Liu, H., and Yang, L. (2013) Cyberentity security in the
Internet of Things. Computer, 46 (4), 46–53.

181 Yao, X., Han, X., Du, X., and Zhou, X. (2013) A lightweight mul-
ticast authentication mechanism for small scale IoT applications.
IEEE Sensors J., 13 (10), 3693–3701.

182 Lai, C., Li, H., Liang, X., Lu, R., Zhang, K., and Shen, X. (2014)
CPAL: A conditional privacy-preserving authentication with
access linkability for roaming service. IEEE Internet of Things J.,
1 (1), 46–57.

183 Li, F. and Xiong, P. (2013) Practical secure communication for
integrating wireless sensor networks into the Internet of Things.
IEEE Sensors J., 13 (10), 3677–3684.

184 Forsberg, D., Ohba, Y., Patil, B., Tschofenig, H., and Yegin, A.
(2008), Protocol for Carrying Authentication for Network Access
(PANA), RFC 5191. URL http://www.ietf.org/rfc/
rfc5191.txt, updated by RFC 5872.

185 Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and Levkowetz,
H. (2004), Extensible Authentication Protocol (EAP), RFC 3748.
URL http://www.ietf.org/rfc/rfc3748.txt, updated
by RFCs 5247, 7057.

186 Moreno-Sanchez, P., Marin-Lopez, R., and Vidal-Meca, F. (2014)
An open source implementation of the protocol for carrying
authentication for network access: OpenPANA. Network, IEEE,
28 (2), 49–55.

376 References

187 United States Department of Defense (1985) Department of
Defense Trusted Computer System Evaluation Criteria, Tech.
Rep., United States Department of Defense. URL http://csrc
.nist.gov/publications/history/dod85.pdf.

188 Ferraiolo, D. and Kuhn, R. (1992) Role-based access control, in
Proceedings of the 15th NIST-NCSC National Computer Security
Conference, Baltimore, MD, USA.

189 Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., and
Chandramouli, R. (2001) Proposed NIST standard for
role-based access control. ACM Trans. Inf. Syst. Secur., 4 (3),
224–274.

190 Sandhu, R., Coyne, E., Feinstein, H., and Youman, C. (1996)
Role-based access control models. Computer, 29 (2), 38 –47.

191 Yuan, E. and Tong, J. (2005) Attributed based access control
(ABAC) for Web services, in Proceedings of the 2005 IEEE Inter-
national Conference on Web Services, 2005 (ICWS 2005).

192 Schiffman, J., Zhang, X., and Gibbs, S. (2010) DAuth: Fine-grained
authorization delegation for distributed web application con-
sumers, in Proceedings of the 2010 IEEE International Symposium
on Policies for Distributed Systems and Networks (POLICY).

193 Gerdes, S., Bergmann, O., and Bormann, C. (2014) Delegated
CoAP Authentication and Authorization Framework (DCAF),
Internet draft draft-gerdes-ace-dcaf-authorize-00, IETF. URL
http://tools.ietf.org/html/draft-gerdes-ace-
dcaf-authorize-00.

194 OpenID Foundation (2007) OpenID Authentication 2.0 – Final,
Tech. Rep., OpenID Foundation. URL http://openid.net/
specs/openid-authentication-2_0.html.

195 Rescorla, E. and Modadugu, N., Datagram Transport Layer Secu-
rity Version 1.2, RFC 6347.

196 Kent, S. and Atkinson, R., Security Architecture for the Internet
Protocol, RFC 2401.

197 Stanoevska-Slabeva, K. and Wozniak, T. (2010) Grid and Cloud
Computing: A Business Perspective on Technology and Applica-
tions, Springer.

198 Mell, P.M. and Grance, T. (2011) The NIST Definition of Cloud
Computing, Tech. Rep. SP 800-145, National Institute of Stan-
dards & Technology.

References 377

199 Milojičić, D., Llorente, I.M., and Montero, R.S. (2011) OpenNeb-
ula: A cloud management tool. IEEE Internet Computing, 15 (2),
11–14.

200 McAfee, A. and Brynjolfsson, E., Big Data: The Management Rev-
olution. URL https://hbr.org/2012/10/big-data-the-
management-revolution.

201 Hohpe, G. and Woolf, B. (2003) Enterprise Integration Pat-
terns: Designing, Building, and Deploying Messaging Solutions,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

202 Isaacson, C. (2009) Software Pipelines and SOA: Releasing the
Power of Multi-Core Processing, Addison-Wesley Professional.

203 Assunção, M.D., Calheiros, R.N., Bianchi, S., Netto, M.A., and
Buyya, R. (2015) Big Data computing and clouds: Trends and
future directions. Journal of Parallel and Distributed Computing,
79-80, 3–15.

204 IETF, The Internet Engineering Task Force, URL http://www
.ietf.org.

205 Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. Fog comput-
ing and its role in the internet of things, in Proceedings of the
First Edition of the MCC Workshop on Mobile Cloud Computing
(MCC ’12).

206 NGINX, The High-performance Web Server and Reverse Proxy,
URL http://wiki.nginx.org/Main.

207 Fielding, R.T. and Kaiser, G. (1997) The Apache HTTP server
project. IEEE Internet Computing, 1 (4), 88–90.

208 Vilajosana, I., Llosa, J., Martinez, B., Domingo-Prieto, M., Angles,
A., and Vilajosana, X. (2013) Bootstrapping smart cities through
a self-sustainable model based on big data flows. IEEE Commun.
Mag., 51 (6), 128–134.

209 Collina, M., Corazza, G.E., and Vanelli-Coralli, A. (2012) Intro-
ducing the QEST broker: Scaling the IoT by bridging MQTT and
REST, in 2012 IEEE 23rd International Symposium on Personal,
Indoor and Mobile Radio Communications – (PIMRC).

210 Lagutin, D., Visala, K., Zahemszky, A., Burbridge, T., and Marias,
G.F. (2010) Roles and security in a publish/subscribe network
architecture, in 2010 IEEE Symposium on Computers and Com-
munications (ISCC).

211 Wang, C., Carzaniga, A., Evans, D., and Wolf, A.L. (2002) Secu-
rity issues and requirements for Internet-scale publish-subscribe

378 References

systems, in Proceedings of the 35th Annual Hawaii International
Conference on System Sciences, 2002 (HICSS).

212 Raiciu, C. and Rosenblum, D.S. (2006) Enabling confidentiality in
content-based publish/subscribe infrastructures, in Securecomm
and Workshops, 2006.

213 Fremantle, P., Aziz, B., Kopecký, J., and Scott, P. (2014) Federated
identity and access management for the Internet of Things, in
2014 International Workshop on Secure Internet of Things (SIoT).

214 Bacon, J., Evans, D., Eyers, D.M., Migliavacca, M., Pietzuch, P.,
and Shand, B. (2010) Enforcing end-to-end application security in
the cloud, in Proceedings of Middleware 2010: ACM/IFIP/USENIX
11th International Middleware Conference, Bangalore, India,
November 29–December 3, 2010., Springer, Berlin, Heidelberg.

215 Yannuzzi, M., Milito, R., Serral-Gracià, R., Montero, D., and
Nemirovsky, M. (2014) Key ingredients in an IoT recipe: Fog
computing, cloud computing, and more fog computing, in
2014 IEEE 19th International Workshop on Computer Aided
Modeling and Design of Communication Links and Networks
(CAMAD).

216 Docker. URL https://www.docker.com/.
217 Ismail, B.I., Goortani, E.M., Karim, M.B.A., Tat, W.M., Setapa,

S., Luke, J.Y., and Hoe, O.H. (2015) Evaluation of Docker as edge
computing platform, in 2015 IEEE Conference on Open Systems
(ICOS).

218 Xu, Y., Mahendran, V., and Radhakrishnan, S. (2016) SDN
Docker: Enabling application auto-docking/undocking in edge
switch, in 2016 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS).

219 Ramalho, F. and Neto, A. (2016) Virtualization at the net-
work edge: A performance comparison, in 2016 IEEE 17th
International Symposium on A World of Wireless, Mobile and
Multimedia Networks (WoWMoM).

220 Morabito, R. (2016) A performance evaluation of container tech-
nologies on internet of things devices, in 2016 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS).

221 Aazam, M., Khan, I., Alsaffar, A., and Huh, E.N. (2014) Cloud
of things: Integrating internet of things and cloud computing
and the issues involved, in 2014 11th International Bhurban
Conference on Applied Sciences and Technology (IBCAST).

References 379

222 Aazam, M., Hung, P.P., and Huh, E.N. (2014) Smart gateway
based communication for cloud of things, in 2014 IEEE Ninth
International Conference on Intelligent Sensors, Sensor Networks
and Information Processing (ISSNIP).

223 Raspberry Pi Foundation. URL http://www.raspberrypi
.org/.

224 Microsoft, Microsoft Azure – Cloud platform. URL http://
azure.microsoft.com/it-it/.

225 Amazon Inc., Amazon EC2. URL http://aws.amazon.com/
ec2/.

226 Rackspace, NASA, OpenStack Cloud Software – Open source
software for building private and public clouds. URL https://
www.openstack.org/.

227 Oracle Java VM, Java. URL https://www.oracle.com/
java/index.html.

228 Dinakar Dhurjati, Sumant Kowshik, V.A. and Lattner, C. (2003)
Memory safety without runtime checks or garbage collection,
in Proceedings of Languages Compilers and Tools for Embedded
Systems 2003, San Diego, CA. URL http://llvm.cs.uiuc
.edu/pubs/2003-05-05-LCTES03-CodeSafety.html.

229 Bormann, C., Ersue, M., and Keranen, A. (2014), Terminology
for Constrained-Node Networks, RFC 7228 (Informational). URL
http://www.ietf.org/rfc/rfc7228.txt.

230 Mulligan, G. The 6LoWPAN architecture, in Proceedings of the
4th Workshop on Embedded Networked Sensors (EmNets ’07).

231 Want, R., Schilit, B.N., and Jenson, S. (2015) Enabling the internet
of things. Computer, 48 (1), 28–35.

232 Lea, R. (2014) Hypercat: An IoT Interoperability Specification,
Tech. Rep., IoT Ecosystem Demonstrator Interoperability Working
Group. URL http://eprints.lancs.ac.uk/id/eprint/
69124.

233 Heggestuen, J. (2013) One in every 5 people in the world own
a smartphone, one in every 17 own a tablet. Business Insider,
15 Dec. URL http://www.businessinsider.com/
smartphone-and-tablet-penetration-2013-10?
IR=T.

234 Ham, T.H., It’s a little freaky at first, but you get used to it. URL
http://blog.ted.com/sergey-brin-with-google-
glass-at-ted2013/.

380 References

235 Bojanova, I., Hurlburt, G., and Voas, J. (2014) Imagineering an
internet of anything. Computer, 47 (6), 72–77.

236 Fettweis, G., Boche, H., Wiegand, T., Zielinski, E., Schotten, H.,
Merz, P., and Hirche, S. (2014) The Tactile Internet, Tech. Rep.,
ITU-T Technology Watch. URL http://www.itu.int/dms_
pub/itu-t/oth/23/01/T23010000230001PDFE.pdf.

237 Heuer, J., Hund, J., and Pfaff, O. (2015) Toward the Web of
Things: applying Web technologies to the physical world. Com-
puter, 48 (5), 34–42.

238 Hardjono, T., Maler, E., Machulak, M., and Catalano, D. (2015)
User-Managed Access (UMA) Profile of OAuth 2.0, Internet draft
draft-hardjono-oauth-umacore-13, IETF. URL https://tools
.ietf.org/html/draft-hardjono-oauth-umacore-13
.txt.

381

Index

a
Acquisition Module 251
Actuator 137
AMQP 22, 101
Application Layer 21, 34, 201
Application Register 255
Arduino 313
Authorization 219, 222, 335,

349, 353

b
Beacon 152
Big Data 238
Big Stream 239
Bluetooth/BLE 31

c
Classes (devices) 305
Cloud 80, 237
CoAP 35
Constrained Devices 305
Constrained Session Initiation

106
Contiki OS 325
CoRE Interfaces 135
CoRE Link Format 131
CoSIP 60

d
Data Format 138
Delegation-based Authorization

227
Discoverability 131, 145
Distributed Geographic Table

(DGT) 161
Distributed Location Service

(DLS) 160
DNMP 115

e
Ethernet 11

f
Fog Computing 273
Forwarding Protocol for Service

Discovery 180
FreeRTOS 323

g
Gateway 156
Graph-based Processing 247
Graph Framework 254

h
Hardware Platforms 307
Homomorphic Encryption 213

Internet of Things: Architectures, Protocols and Standards, First Edition.
Simone Cirani, Gianluigi Ferrari, Marco Picone, and Luca Veltri.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.

382 Index

HPHT 123
HTTP 21, 90
Hybrid Gateway 235
Hypermedia 86, 95

i
IEEE 802.3 11
IEEE 802.11 12
IEEE 802.15.4 28
Industrial IoT 5, 76
Interface Description Attribute

135
Internet of Things (IoT) 25
Interoperability 79
IoT Gateway 156
IoT Hub 285, 332
IoT-OAS 227
IPv4 14
IPv6 14

j
JSON 141

k
Key agreement 214
Key distribution 214

l
Large Scale Discovery 146, 162
Lightweight Cryptographic Hash

Functions 210
Lightweight Cryptography 202
Lightweight Service Discovery

178
Link Layer 10, 28
Local Discovery 146
Local Filtered Flooding 181
Local Service Discovery 175
6LoWPAN 34
Low-power WiFi 30

LPLT 123
LWC Algorithms 206

m
Media Types for Sensor Markup

138
MQTT 101
Multiple Unicast Forwarding 183

n
Network Layer 14, 33, 197
Normalization Module 253

o
OpenMote 310
OpenWSN 321

p
Parameter 137
Peer-to-Peer 162
Physical Layer 10, 28
Physical Web 152
Powerline Communications 32
Privacy 191
Proxy 156
Publish/Subscribe 98

q
Queues 98

r
Raspberry Pi 318
Representation of Resources 84
Resource 83, 90
Resource Discovery 145, 158
Resource Identifiers 85
Representational State Transfer

(REST) 81, 340
Richardson Maturity Model 88
RIOT 324

Index 383

s
Secure Data Aggregation 217
Security 191
Security Bootstrapping 214
Sensor 136
Service Discovery 145, 158
Service Discovery Protocol 168
Session Initiation 102
Shared Group-key Distribution

215
Simulation 326
SIP 23
Smart City 4
Smart Farming 7
Smart Grid 4
Software 321
Standard 9
Statelessness 86
Subscribe 98
Symmetric-key LWC Algorithms

203

t
TCP 19
Telemetry 100

TelosB 307
Testbed 335, 345
TinyOS 322
TI-RTOS 323
Traditional vs. Lightweight

security 196
Transport layer 17, 34, 199

u
UDP 19
UPnP 152
URI 152

w
Wearable 336, 340
Web of Things 81, 97,

328
Wireless 2

z
ZeroConf 151, 167
ZigBee 28
Zolertia Z1 307

